Suppr超能文献

使用全卷积神经网络对多发性硬化症的脑和病变进行分割:一项大规模研究。

Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study.

机构信息

Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.

Department of Electrical Engineering, The University of Texas at Tyler, Houston, TX, USA.

出版信息

Mult Scler. 2020 Sep;26(10):1217-1226. doi: 10.1177/1352458519856843. Epub 2019 Jun 13.

Abstract

OBJECTIVE

To investigate the performance of deep learning (DL) based on fully convolutional neural network (FCNN) in segmenting brain tissues in a large cohort of multiple sclerosis (MS) patients.

METHODS

We developed a FCNN model to segment brain tissues, including T2-hyperintense MS lesions. The training, validation, and testing of FCNN were based on ~1000 magnetic resonance imaging (MRI) datasets acquired on relapsing-remitting MS patients, as a part of a phase 3 randomized clinical trial. Multimodal MRI data (dual-echo, FLAIR, and T1-weighted images) served as input to the network. Expert validated segmentation was used as the target for training the FCNN. We cross-validated our results using the leave-one-center-out approach.

RESULTS

We observed a high average (95% confidence limits) Dice similarity coefficient for all the segmented tissues: 0.95 (0.92-0.98) for white matter, 0.96 (0.93-0.98) for gray matter, 0.99 (0.98-0.99) for cerebrospinal fluid, and 0.82 (0.63-1.0) for T2 lesions. High correlations between the DL segmented tissue volumes and ground truth were observed ( > 0.92 for all tissues). The cross validation showed consistent results across the centers for all tissues.

CONCLUSION

The results from this large-scale study suggest that deep FCNN can automatically segment MS brain tissues, including lesions, with high accuracy.

摘要

目的

研究基于全卷积神经网络(FCNN)的深度学习(DL)在对大量多发性硬化症(MS)患者的脑组织进行分割中的性能。

方法

我们开发了一种 FCNN 模型来分割脑组织,包括 T2 高信号 MS 病变。FCNN 的训练、验证和测试基于约 1000 个复发缓解型 MS 患者的磁共振成像(MRI)数据集,作为 3 期随机临床试验的一部分。多模态 MRI 数据(双回波、FLAIR 和 T1 加权图像)作为网络的输入。专家验证的分割被用作训练 FCNN 的目标。我们使用留一中心法进行交叉验证。

结果

我们观察到所有分割组织的平均(95%置信区间)Dice 相似系数都很高:白质为 0.95(0.92-0.98),灰质为 0.96(0.93-0.98),脑脊液为 0.99(0.98-0.99),T2 病变为 0.82(0.63-1.0)。DL 分割组织体积与真实值之间存在高度相关性(所有组织均大于 0.92)。交叉验证结果表明,所有组织在各中心的结果都一致。

结论

这项大规模研究的结果表明,深度 FCNN 可以自动分割 MS 脑组织,包括病变,具有很高的准确性。

相似文献

1
Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study.
Mult Scler. 2020 Sep;26(10):1217-1226. doi: 10.1177/1352458519856843. Epub 2019 Jun 13.
3
Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size.
J Magn Reson Imaging. 2020 May;51(5):1487-1496. doi: 10.1002/jmri.26959. Epub 2019 Oct 18.
4
A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis.
Neuroimage Clin. 2020;25:102149. doi: 10.1016/j.nicl.2019.102149. Epub 2019 Dec 28.
6
Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis.
Mult Scler. 2021 Apr;27(4):519-527. doi: 10.1177/1352458520921364. Epub 2020 May 22.
8
Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images.
Neuroimage Clin. 2015 May 16;8:367-75. doi: 10.1016/j.nicl.2015.05.003. eCollection 2015.
9
Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation.
Med Biol Eng Comput. 2020 Sep;58(9):2161-2175. doi: 10.1007/s11517-020-02225-6. Epub 2020 Jul 17.

引用本文的文献

2
A foundation model for generalized brain MRI analysis.
medRxiv. 2024 Dec 3:2024.12.02.24317992. doi: 10.1101/2024.12.02.24317992.
4
3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies.
Front Neurosci. 2023 Oct 27;17:1188336. doi: 10.3389/fnins.2023.1188336. eCollection 2023.
5
BIANCA-MS: An optimized tool for automated multiple sclerosis lesion segmentation.
Hum Brain Mapp. 2023 Oct 1;44(14):4893-4913. doi: 10.1002/hbm.26424. Epub 2023 Aug 2.
6
Scanner agnostic large-scale evaluation of MS lesion delineation tool for clinical MRI.
Front Neurosci. 2023 May 19;17:1177540. doi: 10.3389/fnins.2023.1177540. eCollection 2023.
8
Automatic Intelligent System Using Medical of Things for Multiple Sclerosis Detection.
Comput Intell Neurosci. 2023 Feb 21;2023:4776770. doi: 10.1155/2023/4776770. eCollection 2023.

本文引用的文献

1
Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging.
Comput Med Imaging Graph. 2018 Dec;70:83-100. doi: 10.1016/j.compmedimag.2018.10.002. Epub 2018 Oct 5.
2
AdaptAhead Optimization Algorithm for Learning Deep CNN Applied to MRI Segmentation.
J Digit Imaging. 2019 Feb;32(1):105-115. doi: 10.1007/s10278-018-0107-6.
3
Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI.
Eur Radiol. 2019 Jan;29(1):124-132. doi: 10.1007/s00330-018-5595-8. Epub 2018 Jun 25.
4
Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features.
Med Image Anal. 2018 Aug;48:177-186. doi: 10.1016/j.media.2018.06.006. Epub 2018 Jun 15.
6
MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions.
J Neuroimaging. 2018 Jul;28(4):389-398. doi: 10.1111/jon.12506. Epub 2018 Mar 8.
7
Automatic detection and segmentation of brain metastases on multimodal MR images with a deep convolutional neural network.
Comput Biol Med. 2018 Apr 1;95:43-54. doi: 10.1016/j.compbiomed.2018.02.004. Epub 2018 Feb 9.
8
Multiple Sclerosis.
N Engl J Med. 2018 Jan 11;378(2):169-180. doi: 10.1056/NEJMra1401483.
9
An Advanced MRI Multi-Modalities Segmentation Methodology Dedicated to Multiple Sclerosis Lesions Exploration and Differentiation.
IEEE Trans Nanobioscience. 2017 Dec;16(8):656-665. doi: 10.1109/TNB.2017.2763246. Epub 2017 Oct 16.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验