Suppr超能文献

: 一个用于从蛋白质组学数据集中进行翻译后修饰(PTM)位点定位和基序提取的R包。

: an R package for PTM site localization and motif extraction from proteomic datasets.

作者信息

Wozniak Jacob M, Gonzalez David J

机构信息

Department of Pharmacology, University of California, San Diego, La Jolla, CA, United States of America.

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America.

出版信息

PeerJ. 2019 Jun 4;7:e7046. doi: 10.7717/peerj.7046. eCollection 2019.

Abstract

BACKGROUND

Mass-spectrometry-based proteomics is a prominent field of study that allows for the unbiased quantification of thousands of proteins from a particular sample. A key advantage of these techniques is the ability to detect protein post-translational modifications (PTMs) and localize them to specific amino acid residues. These approaches have led to many significant findings in a wide range of biological disciplines, from developmental biology to cancer and infectious diseases. However, there is a current lack of tools available to connect raw PTM site information to biologically meaningful results in a high-throughput manner. Furthermore, many of the available tools require significant programming knowledge to implement.

RESULTS

The R package was designed to enable researchers, particularly those with minimal programming background, to thoroughly analyze PTMs in proteomic data sets. The package contains three functions: parseDB, phindPTMs and extractBackground. Together, these functions allow users to reformat proteome databases for easier analysis, localize PTMs within full proteins, extract motifs surrounding the identified sites and create proteome-specific motif backgrounds for statistical purposes. Beta-testing of this R package has demonstrated its simplicity and ease of integration with existing tools.

CONCLUSION

empowers researchers to fully analyze and interpret PTMs derived from proteomic data. This package is simple enough for researchers with limited programming experience to understand and implement. The data produced from this package can inform subsequent research by itself and also be used in conjunction with other tools, such as motif-x, for further analysis.

摘要

背景

基于质谱的蛋白质组学是一个重要的研究领域,它能够对来自特定样本的数千种蛋白质进行无偏定量分析。这些技术的一个关键优势在于能够检测蛋白质的翻译后修饰(PTM)并将其定位到特定的氨基酸残基上。这些方法在从发育生物学到癌症和传染病等广泛的生物学学科中取得了许多重大发现。然而,目前缺乏能够以高通量方式将原始PTM位点信息与具有生物学意义的结果相联系的工具。此外,许多现有工具需要大量编程知识才能实现。

结果

R包被设计用于使研究人员,特别是那些编程背景有限的研究人员,能够全面分析蛋白质组数据集中的PTM。该包包含三个函数:parseDB、phindPTMs和extractBackground。这些函数共同允许用户重新格式化蛋白质组数据库以便于分析,在完整蛋白质中定位PTM,提取已识别位点周围的基序,并为统计目的创建蛋白质组特异性的基序背景。对这个R包的beta测试证明了它的简单性以及与现有工具集成的便利性。

结论

使研究人员能够全面分析和解释源自蛋白质组数据的PTM。这个包足够简单,编程经验有限的研究人员也能理解和使用。该包产生的数据本身就能为后续研究提供信息,也可与其他工具(如Motif-X)结合使用以进行进一步分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f00/6555389/93e03e15aa44/peerj-07-7046-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验