Suppr超能文献

埃博拉病毒和社交媒体上的地域指责:对 2014-2015 年埃博拉疫情期间推特和脸书对话的分析。

Ebola and Localized Blame on Social Media: Analysis of Twitter and Facebook Conversations During the 2014-2015 Ebola Epidemic.

机构信息

School of Social Work, University of Ottawa, 120 University Private, Room 12002, Ottawa, ON, K1N6N5, Canada.

School of Social Work, University of Ottawa, Ottawa, Canada.

出版信息

Cult Med Psychiatry. 2020 Mar;44(1):56-79. doi: 10.1007/s11013-019-09635-8.

Abstract

This study aimed to analyze main groups accused on social media of causing or spreading the 2014-2016 Ebola epidemic in West Africa. In this analysis, blame is construed as a vehicle of meaning through which the lay public makes sense of an epidemic, and through which certain classes of people become "figures of blame". Data was collected from Twitter and Facebook using key word extraction, then categorized thematically. Our findings indicate an overall proximate blame tendency: blame was typically cast on "near-by" figures, namely national governments, and less so on "distant" figures, such as generalized figures of otherness ("Africans", global health authorities, global elites). Our results also suggest an evolution of online blame. In the early stage of the epidemic, blame directed at the affected populations was more prominent. However, during the peak of the outbreak, the increasingly perceived threat of inter-continental spread was accompanied by a progressively proximal blame tendency, directed at figures with whom the social media users had pre-existing biopolitical frustrations. Our study proposes that pro-active and on-going analysis of blame circulating in social media can usefully help to guide communications strategies, making them more responsive to public perceptions.

摘要

这项研究旨在分析社交媒体上被指控导致或传播 2014-2016 年西非埃博拉疫情的主要群体。在这项分析中,指责被构造成一种意义的载体,通过这种载体,公众理解了一场疫情,同时某些类别的人成为了“指责的对象”。我们从 Twitter 和 Facebook 上收集了使用关键词提取的数据,然后进行了主题分类。我们的研究结果表明存在一种整体的近因指责倾向:指责通常指向“附近”的人物,即各国政府,而较少指向“遥远”的人物,如广义的他者形象(“非洲人”、全球卫生当局、全球精英)。我们的结果还表明,在线指责存在演变。在疫情早期,针对受影响人群的指责更为突出。然而,在疫情高峰期,人们越来越意识到洲际传播的威胁,同时指责也逐渐转向那些社交媒体用户与其存在先前生物政治挫败感的人物。我们的研究表明,积极主动地对社交媒体上传播的指责进行分析,可以有效地帮助指导传播策略,使其更能响应公众的看法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba9d/7088957/9633b5546b3a/11013_2019_9635_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验