Suppr超能文献

基于 OPTICAL 预测器的长短时记忆网络的脑波分类。

Brain wave classification using long short-term memory network based OPTICAL predictor.

机构信息

The University of the South Pacific, Suva, Fiji.

Fiji National University, Suva, Fiji.

出版信息

Sci Rep. 2019 Jun 24;9(1):9153. doi: 10.1038/s41598-019-45605-1.

Abstract

Brain-computer interface (BCI) systems having the ability to classify brain waves with greater accuracy are highly desirable. To this end, a number of techniques have been proposed aiming to be able to classify brain waves with high accuracy. However, the ability to classify brain waves and its implementation in real-time is still limited. In this study, we introduce a novel scheme for classifying motor imagery (MI) tasks using electroencephalography (EEG) signal that can be implemented in real-time having high classification accuracy between different MI tasks. We propose a new predictor, OPTICAL, that uses a combination of common spatial pattern (CSP) and long short-term memory (LSTM) network for obtaining improved MI EEG signal classification. A sliding window approach is proposed to obtain the time-series input from the spatially filtered data, which becomes input to the LSTM network. Moreover, instead of using LSTM directly for classification, we use regression based output of the LSTM network as one of the features for classification. On the other hand, linear discriminant analysis (LDA) is used to reduce the dimensionality of the CSP variance based features. The features in the reduced dimensional plane after performing LDA are used as input to the support vector machine (SVM) classifier together with the regression based feature obtained from the LSTM network. The regression based feature further boosts the performance of the proposed OPTICAL predictor. OPTICAL showed significant improvement in the ability to accurately classify left and right-hand MI tasks on two publically available datasets. The improvements in the average misclassification rates are 3.09% and 2.07% for BCI Competition IV Dataset I and GigaDB dataset, respectively. The Matlab code is available at https://github.com/ShiuKumar/OPTICAL .

摘要

脑-机接口(BCI)系统具有更高精度分类脑波的能力是非常理想的。为此,已经提出了许多旨在能够高精度分类脑波的技术。然而,分类脑波的能力及其在实时中的实现仍然有限。在这项研究中,我们介绍了一种使用脑电图(EEG)信号实时分类运动想象(MI)任务的新方案,该方案可以在不同的 MI 任务之间实现高精度的分类。我们提出了一种新的预测器 OPTICAL,它使用共同空间模式(CSP)和长短期记忆(LSTM)网络的组合来获得改进的 MI EEG 信号分类。提出了一种滑动窗口方法来从空间滤波数据中获取时间序列输入,该输入成为 LSTM 网络的输入。此外,我们不是直接使用 LSTM 进行分类,而是使用 LSTM 网络的回归输出作为分类的特征之一。另一方面,线性判别分析(LDA)用于减少基于 CSP 方差的特征的维数。在执行 LDA 后在降维平面中的特征与从 LSTM 网络获得的基于回归的特征一起作为输入被馈送到支持向量机(SVM)分类器。基于回归的特征进一步提高了所提出的 OPTICAL 预测器的性能。OPTICAL 在两个公开可用的数据集上对手动和右手 MI 任务的准确分类能力有了显著的提高。对于 BCI 竞赛 IV 数据集 I 和 GigaDB 数据集,平均错误分类率分别提高了 3.09%和 2.07%。Matlab 代码可在 https://github.com/ShiuKumar/OPTICAL 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82f5/6591300/45d6d16c8aec/41598_2019_45605_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验