Department of Civil and Mineral Engineering , University of Toronto 35 St. George Street , Toronto , ON M5S 1A4 , Canada.
Environ Sci Technol. 2019 Jul 2;53(13):7903-7912. doi: 10.1021/acs.est.9b01519. Epub 2019 Jun 21.
To estimate greenhouse gas (GHG) emission reductions of electric vehicles (EVs) deployment, it is important to account for emissions from electricity generation. Since such emissions change according to temporal patterns of electricity generation and EV charging, this study operationalizes the concept of marginal emission factors (MEFs) and uses person-level travel activity data to simulate charging scenarios. Our study is set in the Greater Toronto and Hamilton Area in Ontario, Canada. After generating hourly MEFs using a multiple linear regression model, we estimated GHG emissions for EV charging at two EV penetration rates, 5% and 30%, and five charging scenarios: home, work and shopping, night, downtown vs suburb, and an optimal low emission charging scenario, matching charging time with the lowest available MEF. We observed that vehicle electrification substantially reduces GHG emissions, even when using MEFs that are up to seven times higher than average electricity emission factors. With Ontario's 2017 electricity generation mix, EVs achieve over 80% lower fuel cycle emissions compared with equivalent sets of gasoline vehicles. At 5% penetration, night charging nearly matches low emission charging, but night charging emissions increase with 30% EV penetration, suggesting a need for policy that can smooth out charging demand after midnight.
为了估算电动汽车 (EV) 部署的温室气体 (GHG) 减排量,需要考虑发电产生的排放。由于这些排放会根据发电和电动汽车充电的时间模式而变化,因此本研究将边际排放因子 (MEF) 的概念实用化,并使用个人层面的出行活动数据来模拟充电场景。我们的研究以加拿大安大略省大多伦多和汉密尔顿地区为背景。在使用多元线性回归模型生成每小时 MEF 后,我们根据两种电动汽车渗透率(5%和 30%)和五种充电场景(家庭、工作和购物、夜间、市区与郊区以及最佳低排放充电场景)来估计电动汽车充电的 GHG 排放,该最佳低排放充电场景使充电时间与最低可用 MEF 相匹配。我们发现,即使使用比平均电力排放因子高出多达七倍的 MEF,车辆电气化也能大幅减少 GHG 排放。在安大略省 2017 年的发电组合中,与同等数量的汽油车相比,电动汽车的燃料循环排放量降低了 80%以上。在 5%的渗透率下,夜间充电几乎可以与低排放充电相匹配,但随着 30%的电动汽车渗透率的增加,夜间充电的排放量会增加,这表明需要有政策来平滑午夜后的充电需求。