Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099, United States.
Marain Inc., https://www.marain.ai/.
Environ Sci Technol. 2021 Mar 2;55(5):3229-3239. doi: 10.1021/acs.est.0c06655. Epub 2021 Feb 10.
Transportation is the fastest-growing source of greenhouse gas (GHG) emissions and energy consumption globally. While the convergence of shared mobility, vehicle automation, and electrification has the potential to drastically reduce transportation impacts, it requires careful integration with rapidly evolving electricity systems. Here, we examine these interactions using a U.S.-wide simulation framework encompassing private electric vehicles (EVs), shared automated EVs (SAEVs), charging infrastructure, controlled EV charging, and a grid economic dispatch model to simulate personal mobility exclusively using EVs. We find that private EVs with uncontrolled charging would reduce GHG emissions by 46% compared to gasoline vehicles. Private EVs with fleetwide controlled charging would achieve a 49% reduction in emissions from baseline and reduce peak charging demand by 53% from the uncontrolled scenario. We also find that an SAEV fleet 9% the size of today's active vehicle fleet can satisfy trip demand with only 2.6 million chargers (0.2 per EV). Such an SAEV fleet would achieve a 70% reduction in GHG emissions at 41% of the lifecycle cost as a private EV fleet with controlled charging. The emissions and cost advantage of SAEVs is primarily due to reduced vehicle manufacturing compared with private EVs.
交通是温室气体(GHG)排放和能源消耗增长最快的来源。虽然共享出行、车辆自动化和电气化的融合有可能大幅减少交通的影响,但这需要与快速发展的电力系统进行谨慎整合。在这里,我们使用一个涵盖美国范围的模拟框架来研究这些相互作用,该框架包括私人电动汽车(EV)、共享自动驾驶电动汽车(SAEV)、充电基础设施、可控 EV 充电和电网经济调度模型,以仅使用 EV 模拟个人出行。我们发现,与汽油车相比,未经控制的私人电动汽车充电可减少 46%的温室气体排放。如果对私人电动汽车进行全面的车队控制充电,那么与基线相比,排放量将减少 49%,与未经控制的情况相比,峰值充电需求将减少 53%。我们还发现,规模为当今活跃汽车车队 9%的 SAEV 车队仅需 260 万个充电器(每辆电动汽车 0.2 个)就可以满足出行需求。这样的 SAEV 车队的温室气体排放量将减少 70%,生命周期成本仅为具有可控充电的私人电动汽车车队的 41%。与私人电动汽车相比,SAEV 的车辆制造减少是其具有排放和成本优势的主要原因。