Suppr超能文献

固氮酶的作用机制,包括所有步骤。

The mechanism for nitrogenase including all steps.

机构信息

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.

出版信息

Phys Chem Chem Phys. 2019 Jul 17;21(28):15747-15759. doi: 10.1039/c9cp02073j.

Abstract

The catalytic cofactor of the most common form of nitrogenase contains seven irons and one molybdenum bound together by sulfide bonds. Surprisingly, a central carbide has been demonstrated by experiments. Another noteworthy structural component is a large homocitrate ligand. In recent theoretical studies it has been shown that the central carbide is needed as a place for the incoming protons that are necessary parts of a reduction process. It has also been shown that a role for the homocitrate ligand could be that it may be rotated to release one bond to molybdenum. In the present study, the carbide protonation steps are reinvestigated with similar results to those reported before. The actual activation of N2 in the E4 state is an extremely complicated process. It has been found experimentally that two hydrides should leave as H2, in a reductive elimination process, to allow N2 activation in E4 in an easily reversible step. It is here suggested that after H2 is released, it is necessary for the metal cofactor to get rid of one proton. This is achieved by protonating the homocitrate and then rotating it to release one of the bonds to Mo. After this rotation, N2 can bind. In the E5 step, the homocitrate is rotated back to its original position and remains that way until the end of the catalytic process. The N2 protonation steps are energetically easy. Since a protonated carbide has never been observed experimentally, it is necessary to also have a mechanism for deprotonating the carbon at the end of the catalytic cycles. Such a mechanism is suggested here.

摘要

固氮酶最常见形式的催化辅因子包含七个铁原子和一个钼原子,它们通过硫键结合在一起。令人惊讶的是,实验已经证明了其中存在一个中心碳化物。另一个值得注意的结构组件是一个大的同型柠檬酸配体。在最近的理论研究中,已经表明中心碳化物是必需的,因为它是进入质子的场所,而质子是还原过程的必要组成部分。还表明,同型柠檬酸配体的作用可能是它可以旋转以释放一个与钼的键。在本研究中,重新研究了碳化质子化步骤,得到了与之前报道相似的结果。E4 态下 N2 的实际活化是一个极其复杂的过程。实验已经发现,在还原消除过程中,两个氢化物应该作为 H2 离开,以允许 N2 在 E4 中以容易可逆的步骤活化。这里提出的是,在 H2 释放后,金属辅因子有必要去除一个质子。这是通过质子化同型柠檬酸,然后旋转它以释放一个与 Mo 的键来实现的。旋转后,N2 可以结合。在 E5 步骤中,同型柠檬酸被旋转回其原始位置,并保持这种状态直到催化过程结束。N2 质子化步骤在能量上很容易。由于实验中从未观察到质子化的碳化碳,因此在催化循环结束时,也需要有一种脱质子的机制。这里提出了这样一种机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验