Arranz-Gibert Pol, Patel Jaymin R, Isaacs Farren J
Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA.
Systems Biology Institute, Yale University, West Haven, CT 06516, USA.
Life (Basel). 2019 Jul 5;9(3):58. doi: 10.3390/life9030058.
The genetic code defines how information in the genome is translated into protein. Aside from a handful of isolated exceptions, this code is universal. Researchers have developed techniques to artificially expand the genetic code, repurposing codons and translational machinery to incorporate nonstandard amino acids (nsAAs) into proteins. A key challenge for robust genetic code expansion is orthogonality; the engineered machinery used to introduce nsAAs into proteins must co-exist with native translation and gene expression without cross-reactivity or pleiotropy. The issue of orthogonality manifests at several levels, including those of codons, ribosomes, aminoacyl-tRNA synthetases, tRNAs, and elongation factors. In this concept paper, we describe advances in genome recoding, translational engineering and associated challenges rooted in establishing orthogonality needed to expand the genetic code.
遗传密码定义了基因组中的信息如何被翻译成蛋白质。除了少数孤立的例外情况,这个密码是通用的。研究人员已经开发出技术来人工扩展遗传密码,重新利用密码子和翻译机制将非标准氨基酸(nsAAs)掺入蛋白质中。强大的遗传密码扩展面临的一个关键挑战是正交性;用于将nsAAs引入蛋白质的工程化机制必须与天然翻译和基因表达共存,而不会产生交叉反应或多效性。正交性问题在多个层面表现出来,包括密码子、核糖体、氨酰-tRNA合成酶、tRNA和延伸因子等层面。在这篇概念论文中,我们描述了基因组重新编码、翻译工程方面的进展以及在建立扩展遗传密码所需的正交性方面所面临的相关挑战。