Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria (CICATA-Legaria) , Calz Legaria 694, Col. Irrigación , 11500 Ciudad de México , Mexico.
Department of Immunology and Oncology and Nanobiomedicine Initiative , Centro Nacional de Biotecnología (CNB-CSIC) , Darwin 3 , 28049 Madrid , Spain.
ACS Appl Mater Interfaces. 2019 Jul 31;11(30):26648-26663. doi: 10.1021/acsami.9b08318. Epub 2019 Jul 22.
Despite the potential of magnetic nanoparticles (NPs) to mediate intracellular hyperthermia when exposed to an alternating magnetic field (AMF), several studies indicate that the intracellular heating capacity of magnetic NPs depends on factors such as cytoplasm viscosity, nanoparticle aggregation within subcellular compartments, and dipolar interactions. In this work, we report the design and synthesis of monodispersed flowerlike superparamagnetic manganese iron oxide NPs with maximized SAR (specific absorption rate) and evaluate their efficacy as intracellular heaters in the human tumor-derived glioblastoma cell line U87MG. Three main strategies to tune the particle anisotropy of the core and the surface to reach the maximum heating efficiency were adopted: (1) varying the crystalline anisotropy by inserting a low amount of Mn in the inverse spinel structure, (2) varying the NP shape to add an additional anisotropy source while keeping the superparamagnetic behavior, and (3) maximizing NP-cell affinity through conjugation with a biological targeting molecule to reach the NP concentration required to increase the temperature within the cell. We investigate possible effects produced by these improved NPs under the AMF ( = 96 kHz, = 47 kA/m) exposure in the glioblastoma cell line U87MG by monitoring the expression of gene and reactive oxygen species (ROS) production, as both effects have been described to be induced by increasing the intracellular temperature. The induced cell responses include cellular membrane permeabilization and rupture with concomitant high ROS appearance and expression, followed by cell death. The responses were largely limited to cells that contained the NPs exposed to the AMF. Our results indicate that the developed strategies to optimize particle anisotropy in this work are a promising guidance to improve the heating efficiency of magnetic NPs in the human glioma cell line.
尽管磁性纳米粒子 (NPs) 在暴露于交变磁场 (AMF) 时具有介导细胞内热的潜力,但有几项研究表明,磁性 NPs 的细胞内加热能力取决于细胞质粘度、亚细胞隔室内的纳米颗粒聚集以及偶极相互作用等因素。在这项工作中,我们报告了具有最大化 SAR(比吸收率)的单分散花状超顺磁锰铁氧化物 NPs 的设计和合成,并评估了它们作为人肿瘤衍生的神经胶质瘤细胞系 U87MG 中细胞内加热器的功效。采用了三种主要策略来调整核心和表面的颗粒各向异性以达到最大加热效率:(1) 通过在反尖晶石结构中插入少量 Mn 来改变晶体各向异性,(2) 通过改变 NP 形状来增加额外的各向异性源,同时保持超顺磁性行为,以及 (3) 通过与生物靶向分子缀合来最大化 NP-细胞亲和力,以达到增加细胞内温度所需的 NP 浓度。我们通过监测基因和活性氧 (ROS) 产生的表达来研究 U87MG 神经胶质瘤细胞系中这些改进的 NPs 在 AMF(=96 kHz,=47 kA/m)暴露下可能产生的影响,因为这两种效应都已被描述为通过增加细胞内温度而引起。诱导的细胞反应包括细胞膜通透性增加和破裂,同时伴随着高 ROS 出现和基因表达,随后是细胞死亡。这些反应主要局限于含有暴露于 AMF 的 NPs 的细胞。我们的结果表明,在这项工作中优化粒子各向异性的开发策略为提高磁性 NPs 在人神经胶质瘤细胞系中的加热效率提供了有希望的指导。
Mater Sci Eng C Mater Biol Appl. 2014-9
Nanomedicine (Lond). 2014-12
ACS Appl Mater Interfaces. 2025-8-20
Asian J Pharm Sci. 2024-10
Int J Mol Sci. 2024-9-19
Front Bioeng Biotechnol. 2023-7-21
Mater Today Bio. 2023-5-19