Suppr超能文献

数据工作:数据丰富型医学时代的意义建构

Data Work: Meaning-Making in the Era of Data-Rich Medicine.

作者信息

Fiske Amelia, Prainsack Barbara, Buyx Alena

机构信息

Institute for History and Ethics of Medicine, Technical University of Munich School of Medicine, Technical University of Munich, Munich, Germany.

Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.

出版信息

J Med Internet Res. 2019 Jul 9;21(7):e11672. doi: 10.2196/11672.

Abstract

In the era of data-rich medicine, an increasing number of domains of people's lives are datafied and rendered usable for health care purposes. Yet, deriving insights for clinical practice and individual life choices and deciding what data or information should be used for this purpose pose difficult challenges that require tremendous time, resources, and skill. Thus, big data not only promises new clinical insights but also generates new-and heretofore largely unarticulated-forms of work for patients, families, and health care providers alike. Building on science studies, medical informatics, Anselm Strauss and colleagues' concept of patient work, and subsequent elaborations of articulation work, in this article, we analyze the forms of work engendered by the need to make data and information actionable for the treatment decisions and lives of individual patients. We outline three areas of data work, which we characterize as the work of supporting digital data practices, the work of interpretation and contextualization, and the work of inclusion and interaction. This is a first step toward naming and making visible these forms of work in order that they can be adequately seen, rewarded, and assessed in the future. We argue that making data work visible is also necessary to ensure that the insights of big and diverse datasets can be applied in meaningful and equitable ways for better health care.

摘要

在数据丰富的医学时代,人们生活中越来越多的领域被数据化,并被用于医疗保健目的。然而,从临床实践和个人生活选择中获取见解,以及决定为此目的应使用哪些数据或信息,都带来了艰巨的挑战,需要大量的时间、资源和技能。因此,大数据不仅有望带来新的临床见解,还为患者、家庭和医疗保健提供者带来了新的、迄今为止很大程度上未被阐明的工作形式。基于科学研究、医学信息学、安塞尔姆·施特劳斯及其同事的患者工作概念,以及随后对表达工作的阐述,在本文中,我们分析了为使数据和信息对个体患者的治疗决策和生活具有可操作性而产生的工作形式。我们概述了数据工作的三个领域,我们将其描述为支持数字数据实践的工作、解释和情境化的工作以及纳入和互动的工作。这是朝着命名并使这些工作形式可见迈出的第一步,以便它们在未来能够得到充分的关注、认可和评估。我们认为,使数据工作可见对于确保庞大而多样的数据集的见解能够以有意义且公平的方式应用于改善医疗保健也是必要的。

相似文献

3
Functional Neuroimaging in the New Era of Big Data.新时代的功能神经影像学:大数据篇
Genomics Proteomics Bioinformatics. 2019 Aug;17(4):393-401. doi: 10.1016/j.gpb.2018.11.005. Epub 2019 Dec 4.
10
IT infrastructure in the era of imaging 3.0.成像 3.0 时代的 IT 基础架构。
J Am Coll Radiol. 2014 Dec;11(12 Pt B):1197-204. doi: 10.1016/j.jacr.2014.09.005. Epub 2014 Dec 1.

引用本文的文献

1
[Big Data in health promotion and prevention].[健康促进与预防中的大数据]
Pravent Gesundh. 2022;17(2):156-162. doi: 10.1007/s11553-021-00871-8. Epub 2021 Jul 1.
2
Personal data store ecosystems in health and social care.健康和社会护理中的个人数据存储生态系统。
Front Public Health. 2024 Feb 7;12:1348044. doi: 10.3389/fpubh.2024.1348044. eCollection 2024.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验