Suppr超能文献

TOXIFY:一种用于对动物毒液蛋白进行分类的深度学习方法。

TOXIFY: a deep learning approach to classify animal venom proteins.

作者信息

Cole T Jeffrey, Brewer Michael S

机构信息

Department of Biology, East Carolina University, Greenville, NC, United States of America.

出版信息

PeerJ. 2019 Jun 28;7:e7200. doi: 10.7717/peerj.7200. eCollection 2019.

Abstract

In the era of Next-Generation Sequencing and shotgun proteomics, the sequences of animal toxigenic proteins are being generated at rates exceeding the pace of traditional means for empirical toxicity verification. To facilitate the automation of toxin identification from protein sequences, we trained Recurrent Neural Networks with Gated Recurrent Units on publicly available datasets. The resulting models are available via the novel software package TOXIFY, allowing users to infer the probability of a given protein sequence being a venom protein. TOXIFY is more than 20X faster and uses over an order of magnitude less memory than previously published methods. Additionally, TOXIFY is more accurate, precise, and sensitive at classifying venom proteins.

摘要

在下一代测序和鸟枪法蛋白质组学时代,动物产毒蛋白的序列生成速度超过了传统经验毒性验证方法的速度。为了促进从蛋白质序列中自动识别毒素,我们使用门控循环单元在公开可用的数据集上训练了循环神经网络。通过新颖的软件包TOXIFY可以获得生成的模型,用户可以据此推断给定蛋白质序列是毒液蛋白的概率。与之前发表的方法相比,TOXIFY的速度快20多倍,内存使用量减少了一个数量级以上。此外,TOXIFY在毒液蛋白分类方面更准确、精确且灵敏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b53/6601600/7e09ec9b6e28/peerj-07-7200-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验