Suppr超能文献

真菌效应因子 AVR-Pik 的多种变体与水稻蛋白 OsHIPP19 的 HMA 结构域结合,为植物防御工程提供了基础。

Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense.

机构信息

Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.

Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan.

出版信息

J Biol Chem. 2021 Jan-Jun;296:100371. doi: 10.1016/j.jbc.2021.100371. Epub 2021 Feb 4.

Abstract

Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.

摘要

微生物植物病原体分泌效应蛋白,这些蛋白操纵宿主以促进感染。效应蛋白可以被植物细胞内的核苷酸结合富含亮氨酸重复(NLR)受体识别,从而引发免疫反应。来自稻瘟病菌 Magnaporthe oryzae 的 AVR-Pik 效应子被一对水稻 NLR 受体 Pik-1 和 Pik-2 识别。Pik-1 含有一个非典型的整合重金属相关(HMA)结构域,该结构域直接结合 AVR-Pik 以激活植物防御。AVR-Pik 的宿主靶标也是含有 HMA 结构域的蛋白质,即重金属相关异戊烯基化植物蛋白(HIPPs)和重金属相关植物蛋白(HPPs)。在这里,我们证明这些靶标之一与更广泛的 AVR-Pik 变体相互作用,而不是与 Pik-1 HMA 结构域相互作用。我们定义了 AVR-Pik 与 OsHIPP19 之间相互作用的生化和结构基础,并将该相互作用与 Pik-1 的 HMA 结构域形成的相互作用进行了比较。使用分析凝胶过滤和表面等离子体共振,我们表明,多个 AVR-Pik 变体,包括不与任何鉴定的 Pik-1 等位基因相互作用的隐匿变体 AVR-PikC 和 AVR-PikF,都以纳摩尔亲和力结合到 OsHIPP19 上。OsHIPP19 与 AVR-PikF 复合物的晶体结构揭示了界面上的差异,这些差异为 OsHIPP19-HMA 与更广泛的 AVR-Pik 变体形成高亲和力结合提供了基础,而这是 Pik-1 的整合 HMA 结构域所无法实现的。我们的研究结果为工程 Pik-1 的 HMA 结构域提供了基础,以扩展对当前未识别的 AVR-Pik 变体的结合,并扩大水稻对不同病原体菌株的抗病性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验