Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom.
Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.
PLoS Pathog. 2021 Mar 1;17(3):e1009368. doi: 10.1371/journal.ppat.1009368. eCollection 2021 Mar.
Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.
军备竞赛的共同进化导致病原体及其宿主免疫系统发生快速适应性变化。植物细胞内的 NLR 免疫受体可以识别病原体分泌的效应蛋白,从而促进病原体的易感性,激活免疫反应,阻止病原体的定植。因此,病原体效应蛋白进化以逃避免疫识别,具有高度的可变性。反过来,NLR 受体是植物中最多样化的蛋白家族之一,这种变异性是识别效应子变体的基础。NLR 识别效应子的自然变异的分子机制开始被阐明。水稻 NLR 对 Pik-1/Pik-2 可以识别来自稻瘟病菌的 AVR-Pik 效应蛋白,触发免疫反应,限制稻瘟病的感染。受体 Pik-1 中整合的重金属相关 (HMA) 结构域的等位基因变异赋予了对 AVR-Pik 变体的不同结合能力,决定了抗性特异性。以前的机制研究揭示了 Pik 等位基因 Pikm 如何通过一个特殊的 HMA/AVR-Pik 结合界面扩展对效应变体的识别。在这里,我们揭示了另一个 Pik 等位基因 Pikh 赋予扩展识别特异性的机制基础。Pikh-HMA 中的单个残基增加了与 AVR-Pik 变体的结合,导致在植物体内扩展的效应子反应。Pikh-HMA 与 AVR-Pik 变体的复合物的晶体结构证实了 Pikh 和 Pikm 使用相似的分子机制来扩展它们对病原体识别的范围。这项研究表明了不同的 NLR 受体等位基因如何在功能上趋同,从而扩展对病原体效应子的识别特异性。