Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan.
Nat Plants. 2018 Aug;4(8):576-585. doi: 10.1038/s41477-018-0194-x. Epub 2018 Jul 9.
Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture.
加速适应性进化是植物-病原体相互作用的标志。植物细胞内免疫受体 (NLRs) 通常作为等位基因系列存在,具有不同的病原体特异性。这种特异性的决定因素在很大程度上仍然未知。在这里,我们揭示了等位基因水稻 NLR Pik 扩展特异性的生物物理和结构基础,该基因对稻瘟病菌 Magnaporthe oryzae 的效应子 AVR-Pik 作出反应。表达 Pikm 等位基因的水稻植株抵抗表达三种 AVR-Pik 效应变体的任何一种的稻瘟病菌株的感染,而表达 Pikp 的植株仅对一种作出反应。与 Pikp 不同,Pikm 的整合重金属相关 (HMA) 结构域与三种识别出的效应变体中的每一种都具有高亲和力结合,并且效应子与 Pikp-HMA 或 Pikm-HMA 结构域之间的结合界面的变异编码特异性。通过了解共同进化如何塑造等位基因 NLR 的反应特征,我们强调了自然选择如何推动新受体特异性的出现。这项工作对于工程设计具有改进农业用途的 NLR 具有重要意义。