Laboratoire de Biogenèse Membranaire, UMR5200 Centre National de la Recherche Scientifique, Université de Bordeaux, 71 Avenue Edouard Bourlaux, 33883 Villenave d'Ornon cedex, France.
Centre for Plant Science, School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
Plant Physiol. 2019 Sep;181(1):142-160. doi: 10.1104/pp.19.00473. Epub 2019 Jul 12.
Plasmodesmata act as key elements in intercellular communication, coordinating processes related to plant growth, development, and responses to environmental stresses. While many of the developmental, biotic, and abiotic signals are primarily perceived at the plasma membrane (PM) by receptor proteins, plasmodesmata also cluster receptor-like activities; whether these two pathways interact is currently unknown. Here, we show that specific PM-located Leu-rich-repeat receptor-like-kinases, Qiān Shŏu kinase (QSK1) and inflorescence meristem kinase2, which under optimal growth conditions are absent from plasmodesmata, rapidly relocate and cluster to the pores in response to osmotic stress. This process is remarkably fast, is not a general feature of PM-associated proteins, and is independent of sterol and sphingolipid membrane composition. Focusing on QSK1, previously reported to be involved in stress responses, we show that relocalization in response to mannitol depends on QSK1 phosphorylation. Loss-of-function mutation in QSK1 results in delayed lateral root (LR) development, and the mutant is affected in the root response to mannitol stress. Callose-mediated plasmodesmata regulation is known to regulate LR development. We found that callose levels are reduced in the mutant background with a root phenotype resembling ectopic expression of PdBG1, an enzyme that degrades callose at the pores. Both the LR and callose phenotypes can be complemented by expression of wild-type and phosphomimic QSK1 variants, but not by phosphodead QSK1 mutant, which fails to relocalize at plasmodesmata. Together, the data indicate that reorganization of receptor-like-kinases to plasmodesmata is important for the regulation of callose and LR development as part of the plant response to osmotic stress.
胞间连丝作为细胞间通讯的关键元素,协调与植物生长、发育和对环境胁迫响应相关的过程。虽然许多发育、生物和非生物信号主要通过质膜(PM)上的受体蛋白感知,但胞间连丝也聚集受体样活性;这两个途径是否相互作用目前尚不清楚。在这里,我们表明,特定的位于质膜上的富含亮氨酸重复的受体样激酶、千手激酶(QSK1)和花序分生组织激酶 2,在最佳生长条件下不存在于胞间连丝中,它们会快速重新定位并聚集到孔隙中,以响应渗透胁迫。这个过程非常迅速,不是质膜相关蛋白的一般特征,并且不依赖于固醇和神经酰胺的膜组成。我们专注于 QSK1,先前报道其参与应激反应,我们表明,甘露醇响应的重定位依赖于 QSK1 的磷酸化。QSK1 的功能丧失突变导致侧根(LR)发育延迟,并且突变体对甘露醇胁迫的根反应受到影响。已知 callose 介导的胞间连丝调控可调节 LR 发育。我们发现,在具有根表型类似于 PdBG1 过表达的突变背景下,callose 水平降低,PdBG1 是一种在孔隙处降解 callose 的酶。LR 和 callose 表型都可以通过表达野生型和磷酸模拟 QSK1 变体来互补,但不能通过磷酸化缺失的 QSK1 突变来互补,该突变无法在胞间连丝处重新定位。总之,数据表明,受体样激酶向胞间连丝的重新定位对于 callose 和 LR 发育的调控是重要的,这是植物对渗透胁迫响应的一部分。