Suppr超能文献

语调线索的证据强度以及对(不)可靠语调的合理适应。

Evidential Strength of Intonational Cues and Rational Adaptation to (Un-)Reliable Intonation.

作者信息

Roettger Timo B, Franke Michael

机构信息

Department of Linguistics, Northwestern University & University of Cologne.

Institute of Cognitive Science, University of Osnabrück.

出版信息

Cogn Sci. 2019 Jul;43(7):e12745. doi: 10.1111/cogs.12745.

Abstract

Intonation plays an integral role in comprehending spoken language. Listeners can rapidly integrate intonational information to predictively map a given pitch accent onto the speaker's likely referential intentions. We use mouse tracking to investigate two questions: (a) how listeners draw predictive inferences based on information from intonation? and (b) how listeners adapt their online interpretation of intonational cues when these are reliable or unreliable? We formulate a novel Bayesian model of rational predictive cue integration and explore predictions derived under a concrete linking hypothesis relating a quantitative notion of evidential strength of a cue to the moment in time, relative to the unfolding speech signal, at which mouse trajectories turn towards the eventually selected option. In order to capture rational belief updates after concrete observations of a speaker's behavior, we formulate and explore an extension of this model that includes the listener's hierarchical beliefs about the speaker's likely production behavior. Our results are compatible with the assumption that listeners rapidly and rationally integrate all available intonational information, that they expect reliable intonational information initially, and that they adapt these initial expectations gradually during exposition to unreliable input. All materials, data, and scripts can be retrieved here: https://osf.io/dnbuk/.

摘要

语调在理解口语中起着不可或缺的作用。听众能够迅速整合语调信息,以便将给定的音高重音预测性地映射到说话者可能的指称意图上。我们使用鼠标追踪来研究两个问题:(a)听众如何根据语调信息进行预测性推理?以及(b)当语调线索可靠或不可靠时,听众如何调整他们对语调线索的在线解读?我们构建了一个新颖的贝叶斯理性预测线索整合模型,并探索在一个具体的关联假设下得出的预测,该假设将线索的证据强度的定量概念与相对于展开的语音信号而言鼠标轨迹转向最终选定选项的时刻联系起来。为了捕捉在具体观察说话者行为后的理性信念更新,我们构建并探索了该模型的一个扩展,其中包括听众对说话者可能的生成行为的分层信念。我们的结果与以下假设相符:听众迅速且理性地整合所有可用的语调信息,他们最初期望语调信息可靠,并且在接触不可靠输入的过程中会逐渐调整这些初始期望。所有材料、数据和脚本可在此处获取:https://osf.io/dnbuk/

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验