Gotthard Guillaume, Aumonier Sylvain, De Sanctis Daniele, Leonard Gordon, von Stetten David, Royant Antoine
European Synchrotron Radiation Facility, F-38043 Grenoble, France.
Université Grenoble Alpes, CNRS, CEA, IBS (Institut de Biologie Structurale), F-38000 Grenoble, France.
IUCrJ. 2019 Jun 12;6(Pt 4):665-680. doi: 10.1107/S205225251900616X. eCollection 2019 Jul 1.
Carrying out macromolecular crystallography (MX) experiments at cryogenic temperatures significantly slows the rate of global radiation damage, thus facilitating the solution of high-resolution crystal structures of macromolecules. However, cryo-MX experiments suffer from the early onset of so-called specific radiation damage that affects certain amino-acid residues and, in particular, the active sites of many proteins. Here, a series of MX experiments are described which suggest that specific and global radiation damage are much less decoupled at room temperature than they are at cryogenic temperatures. The results reported here demonstrate the interest in reviving the practice of collecting MX diffraction data at room temperature and allow structural biologists to favourably envisage the development of time-resolved MX experiments at synchrotron sources.
在低温下进行大分子晶体学(MX)实验可显著减缓整体辐射损伤的速率,从而有助于解析大分子的高分辨率晶体结构。然而,低温MX实验存在所谓的特定辐射损伤过早出现的问题,这种损伤会影响某些氨基酸残基,尤其是许多蛋白质的活性位点。在此,描述了一系列MX实验,这些实验表明,与低温相比,特定辐射损伤和整体辐射损伤在室温下的解耦程度要小得多。本文报道的结果表明恢复在室温下收集MX衍射数据的做法具有重要意义,并使结构生物学家能够积极设想在同步辐射源开展时间分辨MX实验。