Physics Department, Cornell University, Ithaca, NY 14853, USA.
Acta Crystallogr D Struct Biol. 2023 Jan 1;79(Pt 1):78-94. doi: 10.1107/S2059798322011652.
For roughly two decades, cryocrystallography has been the overwhelmingly dominant method for determining high-resolution biomolecular structures. Competition from single-particle cryo-electron microscopy and micro-electron diffraction, increased interest in functionally relevant information that may be missing or corrupted in structures determined at cryogenic temperature, and interest in time-resolved studies of the biomolecular response to chemical and optical stimuli have driven renewed interest in data collection at room temperature and, more generally, at temperatures from the protein-solvent glass transition near 200 K to ∼350 K. Fischer has recently reviewed practical methods for room-temperature data collection and analysis [Fischer (2021), Q. Rev. Biophys. 54, e1]. Here, the key advantages and physical principles of, and methods for, crystallographic data collection at noncryogenic temperatures and some factors relevant to interpreting the resulting data are discussed. For room-temperature data collection to realize its potential within the structural biology toolkit, streamlined and standardized methods for delivering crystals prepared in the home laboratory to the synchrotron and for automated handling and data collection, similar to those for cryocrystallography, should be implemented.
大约二十年来,低温晶体学一直是确定高分辨率生物分子结构的压倒性主导方法。来自单颗粒低温电子显微镜和微电子衍射的竞争、对低温下确定的结构中可能缺失或损坏的功能相关信息的兴趣增加,以及对生物分子对化学和光学刺激的响应的时间分辨研究的兴趣,都推动了在室温下,更广泛地说,在从接近 200 K 的蛋白质-溶剂玻璃化转变温度到约 350 K 的温度下进行数据收集的重新关注。Fischer 最近回顾了室温数据收集和分析的实用方法[Fischer(2021),Q. Rev. Biophys. 54,e1]。在这里,讨论了在非低温下进行晶体学数据收集的关键优势、物理原理和方法,以及与解释所得数据相关的一些因素。为了使室温数据收集在结构生物学工具包中实现其潜力,应该实施类似于低温晶体学的方法,将在家用实验室制备的晶体递送到同步加速器,并进行自动化处理和数据收集。