Suppr超能文献

一种用于早期轻度认知障碍诊断的脑功能网络新型深度学习框架。

A Novel Deep Learning Framework on Brain Functional Networks for Early MCI Diagnosis.

作者信息

Kam Tae-Eui, Zhang Han, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2018 Sep;11072:293-301. doi: 10.1007/978-3-030-00931-1_34. Epub 2018 Sep 13.

Abstract

Although alternations of brain functional networks (BFNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) have been considered as promising biomarkers for early Alzheimer's disease (AD) diagnosis, it is still challenging to perform individualized diagnosis, especially at the very early stage of preclinical stage of AD, i.e., early mild cognitive impairment (eMCI). Recently, convolutional neural networks (CNNs) show powerful ability in computer vision and image analysis applications, but there is still a gap for directly applying CNNs to rs-fMRI-based disease diagnosis. In this paper, we propose a novel multiple-BFN-based 3D CNN framework that can and learn complex, high-level, hierarchical diagnostic features from various independent component analysis-derived BFNs. More importantly, the embedded features of different BFNs could comprehensively support each other towards a more accurate eMCI diagnosis in a unified model. The performance of the proposed method is validated by a large-sample, multisite, rigorously controlled publicly accessible dataset. The proposed framework can also be conveniently and straightforwardly applied to individualized diagnosis of various neurological and psychiatric diseases.

摘要

尽管源自静息态功能磁共振成像(rs-fMRI)的脑功能网络(BFNs)改变已被视为早期阿尔茨海默病(AD)诊断的有前景的生物标志物,但进行个体化诊断仍然具有挑战性,尤其是在AD临床前阶段的极早期,即早期轻度认知障碍(eMCI)阶段。最近,卷积神经网络(CNNs)在计算机视觉和图像分析应用中显示出强大的能力,但直接将CNNs应用于基于rs-fMRI的疾病诊断仍存在差距。在本文中,我们提出了一种新颖的基于多个BFN的3D CNN框架,该框架可以从各种独立成分分析衍生的BFN中学习复杂、高级、分层的诊断特征。更重要的是,不同BFN的嵌入特征可以在统一模型中相互全面支持,以实现更准确的eMCI诊断。所提出方法的性能通过一个大样本、多站点、严格控制的公开可用数据集进行了验证。所提出的框架还可以方便、直接地应用于各种神经和精神疾病的个体化诊断。

相似文献

1
A Novel Deep Learning Framework on Brain Functional Networks for Early MCI Diagnosis.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:293-301. doi: 10.1007/978-3-030-00931-1_34. Epub 2018 Sep 13.
2
Deep Learning of Static and Dynamic Brain Functional Networks for Early MCI Detection.
IEEE Trans Med Imaging. 2020 Feb;39(2):478-487. doi: 10.1109/TMI.2019.2928790. Epub 2019 Jul 17.
5
Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis.
Neuroinformatics. 2018 Oct;16(3-4):295-308. doi: 10.1007/s12021-018-9370-4.
6
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.
Int J Neural Syst. 2020 Jun;30(6):2050032. doi: 10.1142/S012906572050032X.
7
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.
8
Deep learning based mild cognitive impairment diagnosis using structure MR images.
Neurosci Lett. 2020 Jun 21;730:134971. doi: 10.1016/j.neulet.2020.134971. Epub 2020 May 4.
9
A survey on applications and analysis methods of functional magnetic resonance imaging for Alzheimer's disease.
J Neurosci Methods. 2019 Apr 1;317:121-140. doi: 10.1016/j.jneumeth.2018.12.012. Epub 2018 Dec 26.
10
Hippocampal shape and asymmetry analysis by cascaded convolutional neural networks for Alzheimer's disease diagnosis.
Brain Imaging Behav. 2021 Oct;15(5):2330-2339. doi: 10.1007/s11682-020-00427-y. Epub 2021 Jan 4.

引用本文的文献

1
Persistent homology for MCI classification: a comparative analysis between graph and Vietoris-Rips filtrations.
Front Neurosci. 2025 Feb 26;19:1518984. doi: 10.3389/fnins.2025.1518984. eCollection 2025.
2
Predicting cognitive decline: Deep-learning reveals subtle brain changes in pre-MCI stage.
J Prev Alzheimers Dis. 2025 May;12(5):100079. doi: 10.1016/j.tjpad.2025.100079. Epub 2025 Feb 6.
3
SMART (Splitting-Merging Assisted Reliable) Independent Component Analysis for Extracting Accurate Brain Functional Networks.
Neurosci Bull. 2024 Jul;40(7):905-920. doi: 10.1007/s12264-024-01184-4. Epub 2024 Mar 15.
5
Functional magnetic resonance imaging, deep learning, and Alzheimer's disease: A systematic review.
J Neuroimaging. 2023 Jan;33(1):5-18. doi: 10.1111/jon.13063. Epub 2022 Oct 18.
6
Information Flow Pattern in Early Mild Cognitive Impairment Patients.
Front Neurol. 2021 Nov 11;12:706631. doi: 10.3389/fneur.2021.706631. eCollection 2021.
7
Single and Combined Neuroimaging Techniques for Alzheimer's Disease Detection.
Comput Intell Neurosci. 2021 Jul 13;2021:9523039. doi: 10.1155/2021/9523039. eCollection 2021.
9
Large-Scale Brain Functional Network Integration for Discrimination of Autism Using a 3-D Deep Learning Model.
Front Hum Neurosci. 2021 Jun 2;15:687288. doi: 10.3389/fnhum.2021.687288. eCollection 2021.
10
Influence of medical domain knowledge on deep learning for Alzheimer's disease prediction.
Comput Methods Programs Biomed. 2020 Dec;197:105765. doi: 10.1016/j.cmpb.2020.105765. Epub 2020 Sep 20.

本文引用的文献

1
Holistic classification of CT attenuation patterns for interstitial lung diseases via deep convolutional neural networks.
Comput Methods Biomech Biomed Eng Imaging Vis. 2018;6(1):1-6. doi: 10.1080/21681163.2015.1124249. Epub 2016 Jun 6.
2
Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer's disease.
Brain Res. 2018 Jan 1;1678:262-272. doi: 10.1016/j.brainres.2017.10.025. Epub 2017 Oct 25.
3
Multiple functional networks modeling for autism spectrum disorder diagnosis.
Hum Brain Mapp. 2017 Nov;38(11):5804-5821. doi: 10.1002/hbm.23769. Epub 2017 Aug 28.
5
Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks.
IEEE Trans Biomed Eng. 2018 Sep;65(9):1975-1984. doi: 10.1109/TBME.2017.2715281. Epub 2017 Jun 15.
6
Comparison of IVA and GIG-ICA in Brain Functional Network Estimation Using fMRI Data.
Front Neurosci. 2017 May 19;11:267. doi: 10.3389/fnins.2017.00267. eCollection 2017.
7
3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:212-220. doi: 10.1007/978-3-319-46723-8_25. Epub 2016 Oct 2.
8
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults.
Aging Cell. 2014 Dec;13(6):1068-74. doi: 10.1111/acel.12271. Epub 2014 Sep 25.
10
Restricted Boltzmann machines for neuroimaging: an application in identifying intrinsic networks.
Neuroimage. 2014 Aug 1;96:245-60. doi: 10.1016/j.neuroimage.2014.03.048. Epub 2014 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验