Suppr超能文献

泛基因组和多态性驱动的抗生素耐药性预测

Pan-Genomic and Polymorphic Driven Prediction of Antibiotic Resistance in .

作者信息

Naidenov Bryan, Lim Alexander, Willyerd Karyn, Torres Nathanial J, Johnson William L, Hwang Hong Jin, Hoyt Peter, Gustafson John E, Chen Charles

机构信息

Department of Biochemistry and Molecular Biology, 246 Noble Research Center, Oklahoma State University, Stillwater, OK, United States.

Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States.

出版信息

Front Microbiol. 2019 Jul 4;10:1446. doi: 10.3389/fmicb.2019.01446. eCollection 2019.

Abstract

The are a genetically diverse genus of emerging pathogens that exhibit multidrug resistance to a range of common antibiotics. Two representative species, and , were phenotypically tested to determine minimum inhibitory concentrations (MICs) for five antibiotics. Ultra-long read sequencing with Oxford Nanopore Technologies (ONT) and subsequent assembly produced complete, gapless circular genomes for each strain. Alignment based annotation with Prokka identified 5,480 features in and 5,203 features in , where none of these identified genes or gene combinations corresponded to observed phenotypic resistance values. Pan-genomic analysis, performed with an additional 19 strains, identified a core-genome size of 2,658,537 bp, 32 uniquely identifiable intrinsic chromosomal antibiotic resistance core-genes and 77 antibiotic resistance pan-genes. Using core-SNPs and pan-genes in combination with six machine learning (ML) algorithms, binary classification of clindamycin and vancomycin resistance achieved f1 scores of 0.94 and 0.84, respectively. Performance on the more challenging multiclass problem for fusidic acid, rifampin and ciprofloxacin resulted in f1 scores of 0.70, 0.75, and 0.54, respectively. By producing two sets of quality biological predictors, pan-genome genes and core-genome SNPs, from long-read sequence data and applying an ensemble of ML techniques, our results demonstrated that accurate phenotypic inference, at multiple AMR resolutions, can be achieved.

摘要

[该属名缺失]是一类新兴的病原体,具有遗传多样性,对多种常见抗生素表现出多重耐药性。对两个代表性物种[物种名缺失]和[物种名缺失]进行了表型测试,以确定五种抗生素的最低抑菌浓度(MIC)。使用牛津纳米孔技术(ONT)进行超长读长测序,随后进行[组装步骤缺失]组装,为每个菌株生成了完整、无间隙的环状基因组。使用Prokka进行基于比对的注释,在[物种名缺失]中鉴定出5480个特征,在[物种名缺失]中鉴定出5203个特征,这些鉴定出的基因或基因组合均与观察到的表型耐药值不对应。对另外19个[菌株名缺失]菌株进行泛基因组分析,确定核心基因组大小为2658537 bp,32个唯一可识别的内在染色体抗生素耐药核心基因和77个抗生素耐药泛基因。结合核心单核苷酸多态性(core-SNPs)和泛基因,使用六种机器学习(ML)算法,对克林霉素和万古霉素耐药性的二元分类分别获得了0.94和0.84的F1分数。对于更具挑战性的夫西地酸、利福平和环丙沙星多类问题,F1分数分别为0.70、0.75和0.54。通过从长读长序列数据中生成两组高质量的生物学预测指标——泛基因组基因和核心基因组SNPs,并应用ML技术的集合,我们的结果表明,可以在多个抗菌药物耐药性(AMR)分辨率下实现准确的表型推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bbe/6622151/70250103125b/fmicb-10-01446-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验