Suppr超能文献

用于在亚细胞水平跟踪药物动态的先进成像技术。

Advanced imaging techniques for tracking drug dynamics at the subcellular level.

机构信息

Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.

Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA.

出版信息

Adv Drug Deliv Rev. 2023 Aug;199:114978. doi: 10.1016/j.addr.2023.114978. Epub 2023 Jun 28.

Abstract

Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.

摘要

光学显微镜是一种重要的成像工具,它有效地推动了现代生物医学的发展。近年来,超分辨率显微镜(SRM)已成为生命科学领域中最受欢迎的技术之一,特别是在活细胞成像领域。SRM 已被用于解决基础生物学研究中的许多问题,并且在临床应用中具有很大的潜力。特别是,使用 SRM 来研究亚细胞水平的药物传递和动力学,使研究人员能够更好地研究药物的作用机制,并评估其在体内的靶标疗效。本文旨在综述 SRM 的最新进展,并强调其在评估亚细胞药物动力学方面的一些应用。

相似文献

1
Advanced imaging techniques for tracking drug dynamics at the subcellular level.
Adv Drug Deliv Rev. 2023 Aug;199:114978. doi: 10.1016/j.addr.2023.114978. Epub 2023 Jun 28.
2
3
Molecular probes for super-resolution imaging of drug dynamics.
Adv Drug Deliv Rev. 2024 Jul;210:115330. doi: 10.1016/j.addr.2024.115330. Epub 2024 May 10.
4
Intravital microscopy as a tool to study drug delivery in preclinical studies.
Adv Drug Deliv Rev. 2011 Jan-Feb;63(1-2):119-28. doi: 10.1016/j.addr.2010.09.009. Epub 2010 Oct 7.
5
Subcellular visualization: Organelle-specific targeted drug delivery and discovery.
Adv Drug Deliv Rev. 2023 Aug;199:114977. doi: 10.1016/j.addr.2023.114977. Epub 2023 Jun 28.
6
Super-resolution Microscopy for Biological Imaging.
Adv Exp Med Biol. 2021;3233:23-43. doi: 10.1007/978-981-15-7627-0_2.
7
The power of super-resolution microscopy in modern biomedical science.
Adv Colloid Interface Sci. 2023 Apr;314:102880. doi: 10.1016/j.cis.2023.102880. Epub 2023 Mar 13.
8
The Effect of PEGylation on Drugs' Pharmacokinetic Parameters; from Absorption to Excretion.
Curr Drug Deliv. 2024;21(7):978-992. doi: 10.2174/1567201820666230621124953.
9
Super-Resolution Microscopy: Shedding New Light on Imaging.
Front Chem. 2021 Sep 14;9:746900. doi: 10.3389/fchem.2021.746900. eCollection 2021.
10
Can Developments in Tissue Optical Clearing Aid Super-Resolution Microscopy Imaging?
Int J Mol Sci. 2021 Jun 23;22(13):6730. doi: 10.3390/ijms22136730.

引用本文的文献

1
An initiative on digital nephrology: the Kidney Imageomics Project.
Natl Sci Rev. 2025 Feb 21;12(3):nwaf034. doi: 10.1093/nsr/nwaf034. eCollection 2025 Mar.
2
Near-Infrared Bioimaging Using Two-photon Fluorescent Probes.
Adv Healthc Mater. 2025 Jan;14(3):e2403272. doi: 10.1002/adhm.202403272. Epub 2024 Nov 21.
3
Understanding Mitochondrial and Lysosomal Dynamics by Fluorescent Microscopy.
Methods Mol Biol. 2025;2878:211-221. doi: 10.1007/978-1-0716-4264-1_11.
4
Enzymatic control of intermolecular interactions for generating synthetic nanoarchitectures in cellular environment.
Sci Technol Adv Mater. 2024 Jun 28;25(1):2373045. doi: 10.1080/14686996.2024.2373045. eCollection 2024.
5
Semiconducting polymer dots for multifunctional integrated nanomedicine carriers.
Mater Today Bio. 2024 Mar 24;26:101028. doi: 10.1016/j.mtbio.2024.101028. eCollection 2024 Jun.
6
Probing the dynamic crosstalk of lysosomes and mitochondria with structured illumination microscopy.
Trends Analyt Chem. 2023 Dec;169. doi: 10.1016/j.trac.2023.117370. Epub 2023 Oct 12.
7
Quantifying cell viability through organelle ratiometric probing.
Chem Sci. 2023 Sep 7;14(37):10236-10248. doi: 10.1039/d3sc01537h. eCollection 2023 Sep 27.
8
A general design of pyridinium-based fluorescent probes for enhancing two-photon microscopy.
Biosens Bioelectron. 2023 Nov 1;239:115604. doi: 10.1016/j.bios.2023.115604. Epub 2023 Aug 18.

本文引用的文献

1
Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo.
Nat Chem Biol. 2023 Dec;19(12):1448-1457. doi: 10.1038/s41589-023-01364-9. Epub 2023 Jun 15.
2
Monitoring lysosomal acidity.
Nat Chem Biol. 2023 Dec;19(12):1434-1435. doi: 10.1038/s41589-023-01348-9.
3
An ER-targeted "reserve-release" fluorogen for topological quantification of reticulophagy.
Biomaterials. 2023 Jan;292:121929. doi: 10.1016/j.biomaterials.2022.121929. Epub 2022 Nov 22.
5
Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia.
Sci Adv. 2022 Jul 15;8(28):eabn3326. doi: 10.1126/sciadv.abn3326. Epub 2022 Jul 13.
6
Super-resolution analyzing spatial organization of lysosomes with an organic fluorescent probe.
Exploration (Beijing). 2022 Jun;2(3). doi: 10.1002/exp.20210215. Epub 2022 Mar 22.
7
Organelle Interaction and Drug Discovery: Towards Correlative Nanoscopy and Molecular Dynamics Simulation.
Front Pharmacol. 2022 Jun 20;13:935898. doi: 10.3389/fphar.2022.935898. eCollection 2022.
8
Single Image Capture of Bioactive Ion Crosstalk within Inter-Organelle Membrane Contacts at Nanometer Resolution.
Small Methods. 2022 Aug;6(8):e2200321. doi: 10.1002/smtd.202200321. Epub 2022 Jul 1.
9
De Novo Design of A Membrane-Anchored Probe for Multidimensional Quantification of Endocytic Dynamics.
Adv Healthc Mater. 2022 Apr;11(8):e2102185. doi: 10.1002/adhm.202102185. Epub 2022 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验