Chemical Engineering, University of Birmingham, Birmingham, UK.
Physics and Astronomy, University of Birmingham, Birmingham, UK.
Sci Rep. 2019 Jul 25;9(1):10812. doi: 10.1038/s41598-019-47205-5.
Raman spectroscopy shows promise as a tool for timely diagnostics via in-vivo spectroscopy of the eye, for a number of ophthalmic diseases. By measuring the inelastic scattering of light, Raman spectroscopy is able to reveal detailed chemical characteristics, but is an inherently weak effect resulting in noisy complex signal, which is often difficult to analyse. Here, we embraced that noise to develop the self-optimising Kohonen index network (SKiNET), and provide a generic framework for multivariate analysis that simultaneously provides dimensionality reduction, feature extraction and multi-class classification as part of a seamless interface. The method was tested by classification of anatomical ex-vivo eye tissue segments from porcine eyes, yielding an accuracy >93% across 5 tissue types. Unlike traditional packages, the method performs data analysis directly in the web browser through modern web and cloud technologies as an open source extendable web app. The unprecedented accuracy and clarity of the SKiNET methodology has the potential to revolutionise the use of Raman spectroscopy for in-vivo applications.
拉曼光谱有望通过对眼部的体内光谱学进行及时诊断,成为多种眼科疾病的一种工具。通过测量光的非弹性散射,拉曼光谱能够揭示详细的化学特征,但这是一种固有较弱的效应,会导致噪声复杂的信号,这通常很难分析。在这里,我们接受了这种噪声,开发了自优化的科恩恩指数网络(SKiNET),并提供了一个通用的多变量分析框架,该框架同时提供降维、特征提取和多类分类,作为无缝接口的一部分。该方法通过对来自猪眼的解剖离体眼组织段进行分类进行了测试,在 5 种组织类型中准确率>93%。与传统软件包不同,该方法通过现代网络和云技术直接在网络浏览器中执行数据分析,作为一个开源可扩展的网络应用程序。SKiNET 方法前所未有的准确性和清晰度有可能彻底改变拉曼光谱在体内应用中的使用。