Suppr超能文献

纳米孔测序快速测定产志贺毒素大肠杆菌中的质粒、噬菌体、毒力标记物和抗菌药物耐药基因。

Nanopore sequencing for fast determination of plasmids, phages, virulence markers, and antimicrobial resistance genes in Shiga toxin-producing Escherichia coli.

机构信息

Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States of America.

出版信息

PLoS One. 2019 Jul 30;14(7):e0220494. doi: 10.1371/journal.pone.0220494. eCollection 2019.

Abstract

Whole genome sequencing can provide essential public health information. However, it is now known that widely used short-read methods have the potential to miss some randomly-distributed segments of genomes. This can prevent phages, plasmids, and virulence factors from being detected or properly identified. Here, we compared assemblies of three complete Shiga toxin-producing Escherichia coli (STEC) O26:H11/H- genomes from two different sequence types (ST21 and 29), each acquired using the Nextera XT MiSeq, MinION nanopore-based sequencing, and Pacific Biosciences (PacBio) sequencing. Each closed genome consisted of a single chromosome, approximately 5.7 Mb for CFSAN027343, 5.6 Mb for CFSAN027346, and 5.4 MB for CFSAN027350. However, short-read whole genome sequencing (WGS) using Nextera XT MiSeq failed to identify some virulence genes in plasmids and on the chromosome, both of which were detected using the long-read platforms. Results from long-read MinION and PacBio allowed us to identify differences in plasmid content: a single 88 kb plasmid in CFSAN027343; a 157kb plasmid in CFSAN027350; and two plasmids in CFSAN027346 (one 95 Kb, one 72 Kb). These data enabled rapid characterization of the virulome, detection of antimicrobial genes, and composition/location of Stx phages. Taken together, positive correlations between the two long-read methods for determining plasmids, virulome, antimicrobial resistance genes, and phage composition support MinION sequencing as one accurate and economical option for closing STEC genomes and identifying specific virulence markers.

摘要

全基因组测序可以提供重要的公共卫生信息。然而,现在人们已经知道,广泛使用的短读长方法有可能错过基因组中一些随机分布的片段。这可能导致噬菌体、质粒和毒力因子无法被检测或正确识别。在这里,我们比较了两种不同序列类型(ST21 和 29)的三个完整产志贺毒素大肠杆菌(STEC)O26:H11/H-基因组的组装结果,每个基因组都是使用 Nextera XT MiSeq、MinION 纳米孔测序和 Pacific Biosciences(PacBio)测序获得的。每个封闭基因组都由一条染色体组成,CFSAN027343 约为 5.7 Mb,CFSAN027346 约为 5.6 Mb,CFSAN027350 约为 5.4 MB。然而,使用 Nextera XT MiSeq 的短读长全基因组测序(WGS)未能识别出质粒和染色体上的一些毒力基因,而这些基因都是使用长读长平台检测到的。长读长 MinION 和 PacBio 的结果使我们能够识别质粒含量的差异:CFSAN027343 中有一个单独的 88 kb 质粒;CFSAN027350 中有一个 157kb 的质粒;CFSAN027346 中有两个质粒(一个 95 Kb,一个 72 Kb)。这些数据使我们能够快速表征毒力组、检测抗菌基因以及 Stx 噬菌体的组成/位置。总的来说,两种长读长方法在确定质粒、毒力组、抗菌药物耐药基因和噬菌体组成方面的正相关性支持 MinION 测序作为一种准确且经济的选择,用于封闭 STEC 基因组并识别特定的毒力标记。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/995c/6667211/8f90822cc2dc/pone.0220494.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验