Suppr超能文献

果胶化学和纤维素结晶度以多步机制控制 pavement 细胞形态发生。

Pectin Chemistry and Cellulose Crystallinity Govern Pavement Cell Morphogenesis in a Multi-Step Mechanism.

机构信息

Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X2B2, Canada.

Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02542.

出版信息

Plant Physiol. 2019 Sep;181(1):127-141. doi: 10.1104/pp.19.00303. Epub 2019 Jul 30.

Abstract

Simple plant cell morphologies, such as cylindrical shoot cells, are determined by the extensibility pattern of the primary cell wall, which is thought to be largely dominated by cellulose microfibrils, but the mechanism leading to more complex shapes, such as the interdigitated patterns in the epidermis of many eudicotyledon leaves, is much less well understood. Details about the manner in which cell wall polymers at the periclinal wall regulate the morphogenetic process in epidermal pavement cells and mechanistic information about the initial steps leading to the characteristic undulations in the cell borders are elusive. Here, we used genetics and recently developed cell mechanical and imaging methods to study the impact of the spatio-temporal dynamics of cellulose and homogalacturonan pectin distribution during lobe formation in the epidermal pavement cells of Arabidopsis () cotyledons. We show that nonuniform distribution of cellulose microfibrils and demethylated pectin coincides with spatial differences in cell wall stiffness but may intervene at different developmental stages. We also show that lobe period can be reduced when demethyl-esterification of pectins increases under conditions of reduced cellulose crystallinity. Our data suggest that lobe initiation involves a modulation of cell wall stiffness through local enrichment in demethylated pectin, whereas subsequent increase in lobe amplitude is mediated by the stress-induced deposition of aligned cellulose microfibrils. Our results reveal a key role of noncellulosic polymers in the biomechanical regulation of cell morphogenesis.

摘要

简单的植物细胞形态,如圆柱状的芽细胞,是由初生细胞壁的可伸展模式决定的,初生细胞壁被认为主要由纤维素微纤丝控制,但导致更复杂形状的机制,如许多双子叶植物叶片表皮的叉指状模式,了解得要少得多。关于周壁处细胞壁聚合物调节表皮铺砖细胞形态发生过程的方式的细节,以及导致细胞边界特征性波动的初始步骤的机械信息尚不清楚。在这里,我们使用遗传学和最近开发的细胞力学和成像方法,研究了拟南芥(Arabidopsis thaliana)子叶表皮铺砖细胞中在叶裂片形成过程中纤维素和同质半乳糖醛酸果胶分布的时空动态对细胞力学的影响。我们表明,纤维素微纤丝和去甲基化果胶的不均匀分布与细胞壁硬度的空间差异一致,但可能在不同的发育阶段发挥作用。我们还表明,在降低纤维素结晶度的条件下增加果胶去甲酯化时,可以减少裂片周期。我们的数据表明,裂片的起始涉及通过局部富含去甲基化果胶来调节细胞壁硬度,而随后裂片幅度的增加是由诱导的取向排列的纤维素微纤丝沉积介导的。我们的结果揭示了非纤维素聚合物在细胞形态发生的生物力学调节中的关键作用。

相似文献

引用本文的文献

3
Measuring and manipulating mechanical forces during development.在发育过程中测量和操纵机械力。
Nat Cell Biol. 2025 Apr;27(4):575-590. doi: 10.1038/s41556-025-01632-x. Epub 2025 Mar 10.
8
Flexible Pectin Nanopatterning Drives Cell Wall Organization in Plants.柔性果胶纳米图案化驱动植物细胞壁组织
JACS Au. 2024 Jan 3;4(1):177-188. doi: 10.1021/jacsau.3c00616. eCollection 2024 Jan 22.
9
Structure and growth of plant cell walls.植物细胞壁的结构与生长。
Nat Rev Mol Cell Biol. 2024 May;25(5):340-358. doi: 10.1038/s41580-023-00691-y. Epub 2023 Dec 15.
10
Cell geometry regulates tissue fracture.细胞几何形状调节组织断裂。
Nat Commun. 2023 Dec 13;14(1):8275. doi: 10.1038/s41467-023-44075-4.

本文引用的文献

8
Getting into shape: the mechanics behind plant morphogenesis.塑造形体:植物形态发生的力学机制。
Curr Opin Plant Biol. 2018 Dec;46:25-31. doi: 10.1016/j.pbi.2018.07.002. Epub 2018 Jul 20.
10
Brillouin microscopy: assessing ocular tissue biomechanics.布里渊显微镜:评估眼部组织生物力学。
Curr Opin Ophthalmol. 2018 Jul;29(4):299-305. doi: 10.1097/ICU.0000000000000489.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验