Science and Technology Corporation, 111 Bata Blvd, Suite C, Belcamp, MD 21017, USA.
US Army, 20th CBRNE, Aberdeen Proving Ground, MD 21010, USA.
Genes (Basel). 2019 Jul 30;10(8):578. doi: 10.3390/genes10080578.
Field laboratories interested in using the MinION often need the internet to perform sample analysis. Thus, the lack of internet connectivity in resource-limited or remote locations renders downstream analysis problematic, resulting in a lack of sample identification in the field. Due to this dependency, field samples are generally transported back to the lab for analysis where internet availability for downstream analysis is available. These logistics problems and the time lost in sample characterization and identification, pose a significant problem for field scientists. To address this limitation, we have developed a stand-alone data analysis packet using open source tools developed by the Nanopore community that does not depend on internet availability. Like Oxford Nanopore Technologies' (ONT) cloud-based What's In My Pot (WIMP) software, we developed the offline MinION Detection Software (MINDS) based on the Centrifuge classification engine for rapid species identification. Several online bioinformatics applications have been developed surrounding ONT's framework for analysis of long reads. We have developed and evaluated an offline real time classification application pipeline using open source tools developed by the Nanopore community that does not depend on internet availability. Our application has been tested on ATCC's 20 strain even mix whole cell (ATCC MSA-2002) sample. Using the Rapid Sequencing Kit (SQK-RAD004), we were able to identify all 20 organisms at species level. The analysis was performed in 15 min using a Dell Precision 7720 laptop. Our offline downstream bioinformatics application provides a cost-effective option as well as quick turn-around time when analyzing samples in the field, thus enabling researchers to fully utilize ONT's MinION portability, ease-of-use, and identification capability in remote locations.
感兴趣的现场实验室通常需要互联网来进行样本分析。因此,在资源有限或偏远的地方缺乏互联网连接,使得下游分析变得困难,导致现场无法识别样本。由于这种依赖性,现场样本通常被运回到实验室进行分析,而实验室有可用的互联网进行下游分析。这些物流问题以及在样本特征描述和识别方面浪费的时间,给现场科学家带来了重大问题。为了解决这个限制,我们使用 Nanopore 社区开发的开源工具开发了一个独立的数据分析包,该工具不依赖于互联网的可用性。与 Oxford Nanopore Technologies(ONT)的基于云的 What's In My Pot(WIMP)软件一样,我们基于 Centrifuge 分类引擎开发了离线 MinION Detection Software(MINDS),用于快速物种识别。围绕 ONT 的长读分析框架已经开发了几个在线生物信息学应用程序。我们已经开发并评估了一种基于 Nanopore 社区开发的开源工具的离线实时分类应用程序管道,该工具不依赖于互联网的可用性。我们的应用程序已经在 ATCC 的 20 株混合全细胞(ATCC MSA-2002)样本上进行了测试。使用 Rapid Sequencing Kit(SQK-RAD004),我们能够在物种水平上识别所有 20 种生物。使用 Dell Precision 7720 笔记本电脑,在 15 分钟内完成了分析。我们的离线下游生物信息学应用程序为在现场分析样本时提供了一种具有成本效益的选择以及快速周转时间,从而使研究人员能够充分利用 ONT 的 MinION 便携性、易用性和识别能力在偏远地区。