Bioimaging Laboratory, Bioengineering Department, University of Louisville, Louisville, KY, 40292, USA.
Computer Engineering and Computer Science Department, University of Louisville, Louisville, KY, USA.
Sci Rep. 2019 Jul 31;9(1):11105. doi: 10.1038/s41598-019-47368-1.
Hypertension is a leading mortality cause of 410,000 patients in USA. Cerebrovascular structural changes that occur as a result of chronically elevated cerebral perfusion pressure are hypothesized to precede the onset of systemic hypertension. A novel framework is presented in this manuscript to detect and quantify cerebrovascular changes (i.e. blood vessel diameters and tortuosity changes) using magnetic resonance angiography (MRA) data. The proposed framework consists of: 1) A novel adaptive segmentation algorithm to delineate large as well as small blood vessels locally using 3-D spatial information and appearance features of the cerebrovascular system; 2) Estimating the cumulative distribution function (CDF) of the 3-D distance map of the cerebrovascular system to quantify alterations in cerebral blood vessels' diameters; 3) Calculation of mean and Gaussian curvatures to quantify cerebrovascular tortuosity; and 4) Statistical and correlation analyses to identify the relationship between mean arterial pressure (MAP) and cerebral blood vessels' diameters and tortuosity alterations. The proposed framework was validated using MAP and MRA data collected from 15 patients over a 700-days period. The novel adaptive segmentation algorithm recorded a 92.23% Dice similarity coefficient (DSC), a 94.82% sensitivity, a 99.00% specificity, and a 10.00% absolute vessels volume difference (AVVD) in delineating cerebral blood vessels from surrounding tissues compared to the ground truth. Experiments demonstrated that MAP is inversely related to cerebral blood vessel diameters (p-value < 0.05) globally (over the whole brain) and locally (at circle of Willis and below). A statistically significant direct correlation (p-value < 0.05) was found between MAP and tortuosity (medians of Gaussian and mean curvatures, and average of mean curvature) globally and locally (at circle of Willis and below). Quantification of the cerebrovascular diameter and tortuosity changes may enable clinicians to predict elevated blood pressure before its onset and optimize medical treatment plans of pre-hypertension and hypertension.
高血压是导致美国 41 万患者死亡的主要原因。人们假设,由于长期升高的脑灌注压而导致的脑血管结构变化先于系统性高血压的发生。本文提出了一种新的框架,用于使用磁共振血管造影(MRA)数据检测和量化脑血管变化(即血管直径和迂曲度变化)。该框架由以下几个部分组成:1)一种新的自适应分割算法,用于使用 3D 空间信息和脑血管系统的外观特征来局部描绘大血管和小血管;2)估计脑血管系统 3D 距离图的累积分布函数(CDF),以量化脑血 管直径的变化;3)计算平均曲率和高斯曲率,以量化脑血管迂曲度;4)统计和相关性分析,以确定平均动脉压(MAP)与脑血 管直径和迂曲度变化之间的关系。该框架使用从 15 名患者在 700 天期间收集的 MAP 和 MRA 数据进行了验证。与真实情况相比,新的自适应分割算法在描绘大脑血管和周围组织方面记录了 92.23%的 Dice 相似系数(DSC)、94.82%的敏感性、99.00%的特异性和 10.00%的绝对血管体积差异(AVVD)。实验表明,MAP 与脑血管直径呈负相关(全局(整个大脑)和局部(Willis 环及其以下部位)的 p 值均<0.05)。在全局(在 Willis 环及其以下部位)和局部(在 Willis 环及其以下部位)都发现 MAP 与迂曲度(高斯曲率和平均曲率的中位数,以及平均曲率的平均值)之间存在统计学上显著的正相关(p 值均<0.05)。脑血管直径和迂曲度变化的定量分析可以使临床医生在高血压发生之前预测血压升高,并优化高血压前期和高血压的治疗方案。