Suppr超能文献

血管内和组织氧合的同时光声成像。

Simultaneous photoacoustic imaging of intravascular and tissue oxygenation.

出版信息

Opt Lett. 2019 Aug 1;44(15):3773-3776. doi: 10.1364/OL.44.003773.

Abstract

Hypoxia, a low tissue oxygenation condition caused by insufficient oxygen supply, leads to potentially irreversible tissue damage, such as brain infarction during stroke. Intravascular oxygenation has long been used by photoacoustic imaging, among other imaging modalities, to study hypoxia. However, intravascular oxygenation describes only the oxygen supply via microcirculation, which does not directly reflect the amount of free oxygen available for metabolism in the interstitial fluid. Therefore, to fully understand hypoxia, it is highly desirable to monitor blood oxygenation as well as tissue oxygenation during the same biological process. In this work, by combining high-resolution photoacoustic microscopy (PAM) and a novel bioreducible N-oxide-based hypoxia-sensitive probe HyP-650, we have demonstrated simultaneous imaging of intravascular oxygenation and tissue hypoxia. We have established detailed chemical, optical, and photoacoustic properties of HyP-650 for hypoxic activation in vitro and in living cells. We have also performed PAM on hindlimb ischemia models and tumor-bearing mice to study the correlation between intravascular oxygenation and tissue oxygenation at various hypoxic levels. We expect that Hyp-650 enhanced photoacoustic imaging will find a variety of applications in brain and cancer research.

摘要

缺氧是由于供氧不足导致的组织氧合水平降低,可能导致不可逆转的组织损伤,如中风时的脑梗死。血管内氧合一直被光声成像等成像方式用于研究缺氧。然而,血管内氧合仅描述了通过微循环的供氧情况,并不能直接反映间质液中可用的代谢自由氧的量。因此,要全面了解缺氧,在同一生物过程中监测血氧和组织氧合非常重要。在这项工作中,我们通过结合高分辨率光声显微镜 (PAM) 和一种新型的基于生物还原 N-氧化物的缺氧敏感探针 HyP-650,成功实现了血管内氧合和组织缺氧的同步成像。我们已经建立了 HyP-650 在体外和活细胞中缺氧激活的详细化学、光学和光声特性。我们还在肢体缺血模型和荷瘤小鼠中进行了 PAM,以研究不同缺氧水平下血管内氧合和组织氧合之间的相关性。我们期望 HyP-650 增强的光声成像将在脑和癌症研究中找到多种应用。

相似文献

1
Simultaneous photoacoustic imaging of intravascular and tissue oxygenation.
Opt Lett. 2019 Aug 1;44(15):3773-3776. doi: 10.1364/OL.44.003773.
2
A bioreducible N-oxide-based probe for photoacoustic imaging of hypoxia.
Nat Commun. 2017 Nov 27;8(1):1794. doi: 10.1038/s41467-017-01951-0.
3
In vivo photoacoustic lifetime imaging of tumor hypoxia in small animals.
J Biomed Opt. 2013 Jul;18(7):076019. doi: 10.1117/1.JBO.18.7.076019.
5
Direct measurement of hypoxia in a xenograft multiple myeloma model by optical-resolution photoacoustic microscopy.
Cancer Biol Ther. 2017 Feb;18(2):101-105. doi: 10.1080/15384047.2016.1276137. Epub 2017 Jan 3.
7
Photoacoustic imaging of 3D-printed vascular networks.
Biofabrication. 2022 Jan 24;14(2). doi: 10.1088/1758-5090/ac49d5.
8
photoacoustic imaging dynamically monitors the structural and functional changes of ischemic stroke at a very early stage.
Theranostics. 2020 Jan 1;10(2):816-828. doi: 10.7150/thno.38554. eCollection 2020.
9
Photoacoustic-fluorescence microendoscopy in vivo.
Opt Lett. 2021 May 15;46(10):2340-2343. doi: 10.1364/OL.425753.
10
Spectral photoacoustic imaging to estimate in vivo placental oxygenation during preeclampsia.
Sci Rep. 2019 Jan 24;9(1):558. doi: 10.1038/s41598-018-37310-2.

引用本文的文献

1
Anthropomorphic tissue-mimicking phantoms for oximetry validation in multispectral optical imaging.
J Biomed Opt. 2025 Jul;30(7):076006. doi: 10.1117/1.JBO.30.7.076006. Epub 2025 Jul 17.
2
A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential.
Adv Ther (Weinh). 2024 Aug;7(8). doi: 10.1002/adtp.202400042. Epub 2024 Jul 12.
3
Continuous oxygen monitoring to enhance ex-vivo organ machine perfusion and reconstructive surgery.
Biosens Bioelectron. 2024 Oct 15;262:116549. doi: 10.1016/j.bios.2024.116549. Epub 2024 Jul 3.
4
Photoacoustic imaging for investigating tumor hypoxia: a strategic assessment.
Theranostics. 2023 May 29;13(10):3346-3367. doi: 10.7150/thno.84253. eCollection 2023.
5
Testicular torsion diagnosis and injury assessment using photoacoustic oxygenation imaging.
Photoacoustics. 2023 Apr 25;31:100499. doi: 10.1016/j.pacs.2023.100499. eCollection 2023 Jun.
6
Biomimetic Approach to Promote Cellular Uptake and Enhance Photoacoustic Properties of Tumor-Seeking Dyes.
J Am Chem Soc. 2023 Apr 5;145(13):7313-7322. doi: 10.1021/jacs.2c13489. Epub 2023 Mar 27.
7
Sound out the impaired perfusion: Photoacoustic imaging in preclinical ischemic stroke.
Front Neurosci. 2022 Dec 1;16:1055552. doi: 10.3389/fnins.2022.1055552. eCollection 2022.
8
Photoacoustic imaging for the study of oxygen saturation and total hemoglobin in bone healing and non-union formation.
Photoacoustics. 2022 Sep 27;28:100409. doi: 10.1016/j.pacs.2022.100409. eCollection 2022 Dec.
9
Modified norcyanines enable ratiometric pH imaging beyond 1000 nm.
Biosens Bioelectron. 2022 Dec 1;217:114610. doi: 10.1016/j.bios.2022.114610. Epub 2022 Aug 2.
10
Nanotech Probes: A Revolution in Cancer Diagnosis.
Front Oncol. 2022 Jul 7;12:933125. doi: 10.3389/fonc.2022.933125. eCollection 2022.

本文引用的文献

1
Acoustogenic Probes: A New Frontier in Photoacoustic Imaging.
Acc Chem Res. 2018 Nov 20;51(11):2897-2905. doi: 10.1021/acs.accounts.8b00351. Epub 2018 Oct 31.
2
Quad-mode functional and molecular photoacoustic microscopy.
Sci Rep. 2018 Jul 24;8(1):11123. doi: 10.1038/s41598-018-29249-1.
3
A bioreducible N-oxide-based probe for photoacoustic imaging of hypoxia.
Nat Commun. 2017 Nov 27;8(1):1794. doi: 10.1038/s41467-017-01951-0.
4
Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo.
Nat Commun. 2015 Jan 5;6:5834. doi: 10.1038/ncomms6834.
5
Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound.
Theranostics. 2014 Mar 18;4(6):604-13. doi: 10.7150/thno.7996. eCollection 2014.
6
PET of hypoxia: current and future perspectives.
J Nucl Med. 2012 Aug;53(8):1171-4. doi: 10.2967/jnumed.111.099770. Epub 2012 Jul 12.
8
Quantitative spectroscopic photoacoustic imaging: a review.
J Biomed Opt. 2012 Jun;17(6):061202. doi: 10.1117/1.JBO.17.6.061202.
9
Hypoxia and hypoxia inducible factors: diverse roles in liver diseases.
Hepatology. 2012 Feb;55(2):622-33. doi: 10.1002/hep.25497.
10
Targeting hypoxia in cancer therapy.
Nat Rev Cancer. 2011 Jun;11(6):393-410. doi: 10.1038/nrc3064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验