Suppr超能文献

计算机辅助设计和优化选择性膜溶抗肿瘤肽。

In silico design and optimization of selective membranolytic anticancer peptides.

机构信息

Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.

Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

出版信息

Sci Rep. 2019 Aug 2;9(1):11282. doi: 10.1038/s41598-019-47568-9.

Abstract

Membranolytic anticancer peptides represent a potential strategy in the fight against cancer. However, our understanding of the underlying structure-activity relationships and the mechanisms driving their cell selectivity is still limited. We developed a computational approach as a step towards the rational design of potent and selective anticancer peptides. This machine learning model distinguishes between peptides with and without anticancer activity. This classifier was experimentally validated by synthesizing and testing a selection of 12 computationally generated peptides. In total, 83% of these predictions were correct. We then utilized an evolutionary molecular design algorithm to improve the peptide selectivity for cancer cells. This simulated molecular evolution process led to a five-fold selectivity increase with regard to human dermal microvascular endothelial cells and more than ten-fold improvement towards human erythrocytes. The results of the present study advocate for the applicability of machine learning models and evolutionary algorithms to design and optimize novel synthetic anticancer peptides with reduced hemolytic liability and increased cell-type selectivity.

摘要

溶膜抗癌肽是对抗癌症的一种潜在策略。然而,我们对其结构-活性关系和驱动其细胞选择性的机制的理解仍然有限。我们开发了一种计算方法,作为合理设计有效和选择性抗癌肽的一种手段。这个机器学习模型可以区分具有和不具有抗癌活性的肽。通过合成和测试 12 种计算生成的肽的选择,该分类器得到了实验验证。这些预测中,83%是正确的。然后,我们利用进化分子设计算法来提高抗癌肽对癌细胞的选择性。这种模拟的分子进化过程使对人真皮微血管内皮细胞的选择性提高了五倍,对人红细胞的选择性提高了十倍以上。本研究的结果表明,机器学习模型和进化算法可用于设计和优化新型合成抗癌肽,降低溶血率,提高细胞类型选择性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b291/6677754/fb6cc10e2f7b/41598_2019_47568_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验