Wen Shuyu, Zhu Yuan-Hao, Steuer Oliver, Shaikh Mohd Saif, Prucnal Slawomir, Hübner René, Worbs Andreas, He Li, Helm Manfred, Zhou Shengqiang, Luo Jun-Wei, Berencén Yonder
State Key Laboratory of Semiconductor Physics and Chip Technologies, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.
Materials (Basel). 2025 May 13;18(10):2258. doi: 10.3390/ma18102258.
Incorporating lead (Pb) into the germanium (Ge) lattice emerges as a promising approach for bandgap engineering, enabling luminescence at longer wavelengths and paving the way for enhanced applications in short-wave infrared (SWIR) light sources and photodetectors. In this work, we report on optical properties of GePb alloys fabricated by a complementary metal-oxide semiconductor (CMOS)-compatible process that includes Pb ion implantation followed by solid-phase epitaxial regrowth via flash-lamp annealing. Optical characterization, including photoluminescence spectroscopy and Fourier-transform infrared reflectance spectroscopy, reveals that GePb alloys exhibit a reduced bandgap compared to pure Ge, resulting in longer-wavelength emission, while also providing broadband antireflective properties below 1800 nm wavelengths due to the surface subwavelength nanostructure. These findings position nanostructured GePb as a highly promising candidate for SWIR optoelectronic applications.
将铅(Pb)掺入锗(Ge)晶格中成为一种很有前景的带隙工程方法,可实现更长波长的发光,并为短波红外(SWIR)光源和光电探测器的增强应用铺平道路。在这项工作中,我们报告了通过互补金属氧化物半导体(CMOS)兼容工艺制造的GePb合金的光学性质,该工艺包括铅离子注入,然后通过闪光灯退火进行固相外延再生长。光学表征,包括光致发光光谱和傅里叶变换红外反射光谱,表明GePb合金与纯Ge相比具有减小的带隙,导致发射波长更长,同时由于表面亚波长纳米结构,在1800nm波长以下还具有宽带抗反射特性。这些发现使纳米结构的GePb成为SWIR光电子应用中极具前景的候选材料。