Suppr超能文献

线粒体动力学在调节癌症和干细胞独特表型中的作用

Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells.

作者信息

Chen Hsiuchen, Chan David C

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA.

Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, MC 114-96, Pasadena, CA 91125, USA.

出版信息

Cell Metab. 2017 Jul 5;26(1):39-48. doi: 10.1016/j.cmet.2017.05.016. Epub 2017 Jun 22.

Abstract

Cancer and stem cells appear to share a common metabolic profile that is characterized by high utilization of glucose through aerobic glycolysis. In the presence of sufficient nutrients, this metabolic strategy provides sufficient cellular ATP while additionally providing important metabolites necessary for the biosynthetic demands of continuous cell proliferation. Recent studies indicate that this metabolic profile is dependent on genes that regulate the fusion and fission of mitochondria. High levels of mitochondrial fission activity are associated with high proliferation and invasiveness in some cancer cells and with self-renewal and resistance to differentiation in some stem cells. These observations reveal new ways in which mitochondria regulate cell physiology, through their effects on metabolism and cell signaling.

摘要

癌症细胞和干细胞似乎具有共同的代谢特征,其特点是通过有氧糖酵解对葡萄糖的高利用率。在营养充足的情况下,这种代谢策略能提供足够的细胞三磷酸腺苷(ATP),同时还能提供持续细胞增殖的生物合成需求所需的重要代谢物。最近的研究表明,这种代谢特征依赖于调节线粒体融合和裂变的基因。高水平的线粒体裂变活动与某些癌细胞的高增殖和侵袭性相关,也与某些干细胞的自我更新和抗分化能力相关。这些观察结果揭示了线粒体通过影响代谢和细胞信号传导来调节细胞生理的新方式。

相似文献

1
Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells.
Cell Metab. 2017 Jul 5;26(1):39-48. doi: 10.1016/j.cmet.2017.05.016. Epub 2017 Jun 22.
2
The regulation of tumor cell physiology by mitochondrial dynamics.
Biochem Biophys Res Commun. 2018 May 27;500(1):9-16. doi: 10.1016/j.bbrc.2017.06.192. Epub 2017 Jul 1.
3
Mitochondrial Dynamics in Stem Cells and Differentiation.
Int J Mol Sci. 2018 Dec 5;19(12):3893. doi: 10.3390/ijms19123893.
4
Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
Oncotarget. 2017 Jul 11;8(28):46363-46380. doi: 10.18632/oncotarget.18199.
5
Mitochondrial Mechanisms of Metabolic Reprogramming in Proliferating Cells.
Curr Med Chem. 2015;22(20):2493-504. doi: 10.2174/0929867322666150514095718.
6
Mitofusins, from Mitochondria to Metabolism.
Mol Cell. 2016 Mar 3;61(5):683-694. doi: 10.1016/j.molcel.2016.02.022.
7
Mitophagy-driven metabolic switch reprograms stem cell fate.
Cell Mol Life Sci. 2019 Jan;76(1):27-43. doi: 10.1007/s00018-018-2922-9. Epub 2018 Sep 28.
8
Metabolism in physiological cell proliferation and differentiation.
Trends Cell Biol. 2013 Oct;23(10):484-92. doi: 10.1016/j.tcb.2013.05.004. Epub 2013 Jun 4.
9
Cancer stem cell metabolism: a potential target for cancer therapy.
Mol Cancer. 2016 Nov 8;15(1):69. doi: 10.1186/s12943-016-0555-x.
10
Mitochondrial bioenergetic function and metabolic plasticity in stem cell differentiation and cellular reprogramming.
Biochim Biophys Acta. 2012 May;1820(5):571-6. doi: 10.1016/j.bbagen.2011.09.013. Epub 2011 Sep 29.

引用本文的文献

1
Integrated control of cancer stemness by σ receptor in advanced prostate cancer.
Oncogene. 2025 Sep 2. doi: 10.1038/s41388-025-03541-7.
7
Molecular machineries shaping the mitochondrial inner membrane.
Nat Rev Mol Cell Biol. 2025 May 14. doi: 10.1038/s41580-025-00854-z.
8
Perinuclear mitochondrial clustering for mesenchymal-to-epithelial transition in pluripotency induction.
Stem Cell Reports. 2025 May 13;20(5):102474. doi: 10.1016/j.stemcr.2025.102474. Epub 2025 Apr 17.
9
Active control of mitochondrial network morphology by metabolism-driven redox state.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2421953122. doi: 10.1073/pnas.2421953122. Epub 2025 Apr 17.
10
Myeloma mesenchymal stem cells' bioenergetics afford a novel selective therapeutic target.
Oncogenesis. 2025 Apr 11;14(1):9. doi: 10.1038/s41389-025-00554-5.

本文引用的文献

2
MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling.
Sci Rep. 2017 Feb 8;7:41718. doi: 10.1038/srep41718.
3
NIK/MAP3K14 Regulates Mitochondrial Dynamics and Trafficking to Promote Cell Invasion.
Curr Biol. 2016 Dec 19;26(24):3288-3302. doi: 10.1016/j.cub.2016.10.009. Epub 2016 Nov 23.
5
Multiple dynamin family members collaborate to drive mitochondrial division.
Nature. 2016 Dec 1;540(7631):139-143. doi: 10.1038/nature20555. Epub 2016 Oct 31.
6
Dysfunctional mitochondrial fission impairs cell reprogramming.
Cell Cycle. 2016 Dec;15(23):3240-3250. doi: 10.1080/15384101.2016.1241930. Epub 2016 Oct 18.
8
Biallelic Mutations in DNM1L are Associated with a Slowly Progressive Infantile Encephalopathy.
Hum Mutat. 2016 Sep;37(9):898-903. doi: 10.1002/humu.23033. Epub 2016 Jul 11.
9
ROS homeostasis and metabolism: a dangerous liason in cancer cells.
Cell Death Dis. 2016 Jun 9;7(6):e2253. doi: 10.1038/cddis.2016.105.
10
Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.
Cell Stem Cell. 2016 Aug 4;19(2):232-247. doi: 10.1016/j.stem.2016.04.015. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验