Suppr超能文献

脑代谢活动的区域间因果影响揭示了正常衰老过程中衰老效应的传播。

Interregional causal influences of brain metabolic activity reveal the spread of aging effects during normal aging.

机构信息

Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey.

School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Hum Brain Mapp. 2019 Nov 1;40(16):4657-4668. doi: 10.1002/hbm.24728. Epub 2019 Aug 7.

Abstract

During healthy brain aging, different brain regions show anatomical or functional declines at different rates, and some regions may show compensatory increases in functional activity. However, few studies have explored interregional influences of brain activity during the aging process. We proposed a causality analysis framework combining high dimensionality independent component analysis (ICA), Granger causality, and least absolute shrinkage and selection operator regression on longitudinal brain metabolic activity data measured by Fludeoxyglucose positron emission tomography (FDG-PET). We analyzed FDG-PET images from healthy old subjects, who were scanned for at least five sessions with an averaged intersession interval of 1 year. The longitudinal data were concatenated across subjects to form a time series, and the first-order autoregressive model was used to measure interregional causality among the independent sources of metabolic activity identified using ICA. Several independent sources with reduced metabolic activity in aging, including the anterior temporal lobe and orbital frontal cortex, demonstrated causal influences over many widespread brain regions. On the other hand, the influenced regions were more distributed, and had smaller age-related declines or even relatively increased metabolic activity. The current data demonstrated interregional spreads of aging on metabolic activity at the scale of a year, and have identified key brain regions in the aging process that have strong influences over other regions.

摘要

在健康的大脑衰老过程中,不同的大脑区域以不同的速度表现出解剖或功能的下降,而一些区域的功能活动可能会代偿性增加。然而,很少有研究探索大脑活动在衰老过程中的区域间影响。我们提出了一个因果分析框架,该框架结合了高维独立成分分析(ICA)、格兰杰因果关系和最小绝对收缩和选择算子回归,对纵向脑代谢活动数据进行了分析,这些数据是通过 Fludeoxyglucose 正电子发射断层扫描(FDG-PET)测量的。我们分析了至少扫描五次、平均间隔时间为 1 年的健康老年受试者的 FDG-PET 图像。将纵向数据在受试者之间串联起来形成时间序列,并使用一阶自回归模型来测量使用 ICA 识别的代谢活动的独立源之间的区域间因果关系。在衰老过程中,几个代谢活动减少的独立源,包括前颞叶和眶额皮层,对许多广泛分布的大脑区域都有因果影响。另一方面,受影响的区域分布更广,年龄相关性下降较小,甚至代谢活动相对增加。当前的数据在代谢活动方面展示了一年时间尺度上的区域间衰老传播,并确定了衰老过程中具有强烈影响其他区域的关键大脑区域。

相似文献

6

引用本文的文献

1
Brain connectomics: time for a molecular imaging perspective?脑连接组学:是时候从分子影像学角度来看待了吗?
Trends Cogn Sci. 2023 Apr;27(4):353-366. doi: 10.1016/j.tics.2022.11.015. Epub 2023 Jan 6.

本文引用的文献

9
Multivariate dynamical modelling of structural change during development.发育过程中结构变化的多变量动力学建模。
Neuroimage. 2017 Feb 15;147:746-762. doi: 10.1016/j.neuroimage.2016.12.017. Epub 2016 Dec 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验