Sweeney Amanda M, Plá Virginia, Du Ting, Liu Guojun, Sun Qian, Peng Sisi, Plog Benjamin A, Kress Benjamin T, Wang Xiaowei, Mestre Humberto, Nedergaard Maiken
Center for Translational Neuromedicine, University of Rochester Medical Center.
Center for Translational Neuromedicine, University of Rochester Medical Center;
J Vis Exp. 2019 Jul 29(149). doi: 10.3791/59774.
Cerebrospinal fluid (CSF) flow in rodents has largely been studied using ex vivo quantification of tracers. Techniques such as two-photon microscopy and magnetic resonance imaging (MRI) have enabled in vivo quantification of CSF flow but they are limited by reduced imaging volumes and low spatial resolution, respectively. Recent work has found that CSF enters the brain parenchyma through a network of perivascular spaces surrounding the pial and penetrating arteries of the rodent cortex. This perivascular entry of CSF is a primary driver of the glymphatic system, a pathway implicated in the clearance of toxic metabolic solutes (e.g., amyloid-β). Here, we illustrate a new macroscopic imaging technique that allows real-time, mesoscopic imaging of fluorescent CSF tracers through the intact skull of live mice. This minimally-invasive method facilitates a multitude of experimental designs and enables single or repeated testing of CSF dynamics. Macroscopes have high spatial and temporal resolution and their large gantry and working distance allow for imaging while performing tasks on behavioral devices. This imaging approach has been validated using two-photon imaging and fluorescence measurements obtained from this technique strongly correlate with ex vivo fluorescence and quantification of radio-labeled tracers. In this protocol, we describe how transcranial macroscopic imaging can be used to evaluate glymphatic transport in live mice, offering an accessible alternative to more costly imaging modalities.
在啮齿动物中,脑脊液(CSF)流动的研究主要是通过对示踪剂进行离体定量分析。诸如双光子显微镜和磁共振成像(MRI)等技术已能够对脑脊液流动进行活体定量分析,但它们分别受到成像体积减小和空间分辨率低的限制。最近的研究发现,脑脊液通过围绕啮齿动物皮质软膜和穿通动脉的血管周围间隙网络进入脑实质。脑脊液的这种血管周围进入是类淋巴系统的主要驱动因素,该途径与清除有毒代谢溶质(如β-淀粉样蛋白)有关。在这里,我们展示了一种新的宏观成像技术,该技术可以通过活体小鼠完整的颅骨对荧光脑脊液示踪剂进行实时、介观成像。这种微创方法便于进行多种实验设计,并能够对脑脊液动力学进行单次或重复测试。宏观成像仪具有高空间和时间分辨率,其大的机架和工作距离允许在行为装置上执行任务时进行成像。这种成像方法已通过双光子成像得到验证,并且从该技术获得的荧光测量结果与离体荧光以及放射性标记示踪剂的定量分析密切相关。在本方案中,我们描述了如何使用经颅宏观成像来评估活体小鼠中的类淋巴转运,为更昂贵的成像方式提供了一种可及的替代方法。