Gülhan Perihan Gülşah, Özmen Güzin
Department of Electrical and Electronics Engineering, Institute of Science, Selcuk University, Konya, Turkey.
Department of Biomedical Engineering, Faculty of Technology, Selcuk University, Konya, Turkey.
J Imaging Inform Med. 2025 Feb;38(1):203-216. doi: 10.1007/s10278-024-01189-5. Epub 2024 Jul 19.
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by a reduced attention span, hyperactivity, and impulsive behaviors, which typically manifest during childhood. This study employs functional magnetic resonance imaging (fMRI) to use spontaneous brain activity for classifying individuals with ADHD, focusing on a 3D convolutional neural network (CNN) architecture to facilitate the design of decision support systems. We developed a novel deep learning model based on 3D CNNs using the ADHD-200 database, which comprises datasets from NeuroImage (NI), New York University (NYU), and Peking University (PU). We used fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) data in three dimensions and performed a fivefold cross-validation to address the dataset imbalance. We aimed to verify the efficacy of our proposed 3D CNN by contrasting it with a fully connected neural network (FCNN) architecture. The 3D CNN achieved accuracy rates of 76.19% (NI), 69.92% (NYU), and 70.77% (PU) for fALFF data. The FCNN model yielded lower accuracy rates across all datasets. For generalizability, we trained on NI and NYU datasets and tested on PU. The 3D CNN achieved 69.48% accuracy on fALFF outperforming the FCNN. Our results demonstrate that using 3D CNNs for classifying fALFF data is an effective approach for diagnosing ADHD. Also, FCNN confirmed the efficiency of the designed model.
注意缺陷多动障碍(ADHD)是一种神经发育障碍,其特征为注意力持续时间缩短、多动和冲动行为,这些症状通常在儿童期出现。本研究采用功能磁共振成像(fMRI)利用自发脑活动对ADHD个体进行分类,重点关注三维卷积神经网络(3D CNN)架构以促进决策支持系统的设计。我们使用ADHD - 200数据库开发了一种基于3D CNN的新型深度学习模型,该数据库包含来自NeuroImage(NI)、纽约大学(NYU)和北京大学(PU)的数据集。我们在三个维度上使用低频波动分数幅度(fALFF)和局部一致性(ReHo)数据,并进行五折交叉验证以解决数据集不平衡问题。我们旨在通过将我们提出的3D CNN与全连接神经网络(FCNN)架构进行对比来验证其有效性。对于fALFF数据,3D CNN在NI数据集上的准确率为76.19%,在NYU数据集上为69.92%,在PU数据集上为70.77%。FCNN模型在所有数据集上的准确率较低。为了检验泛化能力,我们在NI和NYU数据集上进行训练,并在PU数据集上进行测试。3D CNN在fALFF数据上的准确率达到69.48%,优于FCNN。我们的结果表明,使用3D CNN对fALFF数据进行分类是诊断ADHD的一种有效方法。此外,FCNN也证实了所设计模型的有效性。