Suppr超能文献

基于智能手机和智能手表的远程主动测试及被动监测在多发性硬化症患者中的依从性和满意度:非随机干预可行性研究

Adherence and Satisfaction of Smartphone- and Smartwatch-Based Remote Active Testing and Passive Monitoring in People With Multiple Sclerosis: Nonrandomized Interventional Feasibility Study.

作者信息

Midaglia Luciana, Mulero Patricia, Montalban Xavier, Graves Jennifer, Hauser Stephen L, Julian Laura, Baker Michael, Schadrack Jan, Gossens Christian, Scotland Alf, Lipsmeier Florian, van Beek Johan, Bernasconi Corrado, Belachew Shibeshih, Lindemann Michael

机构信息

Department of Neurology-Neuroimmunology, Multiple Sclerosis Centre of Catalonia, Vall d'Hebron University Hospital, Barcelona, Spain.

Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.

出版信息

J Med Internet Res. 2019 Aug 30;21(8):e14863. doi: 10.2196/14863.

Abstract

BACKGROUND

Current clinical assessments of people with multiple sclerosis are episodic and may miss critical features of functional fluctuations between visits.

OBJECTIVE

The goal of the research was to assess the feasibility of remote active testing and passive monitoring using smartphones and smartwatch technology in people with multiple sclerosis with respect to adherence and satisfaction with the FLOODLIGHT test battery.

METHODS

People with multiple sclerosis (aged 20 to 57 years; Expanded Disability Status Scale 0-5.5; n=76) and healthy controls (n=25) performed the FLOODLIGHT test battery, comprising active tests (daily, weekly, every two weeks, or on demand) and passive monitoring (sensor-based gait and mobility) for 24 weeks using a smartphone and smartwatch. The primary analysis assessed adherence (proportion of weeks with at least 3 days of completed testing and 4 hours per day passive monitoring) and questionnaire-based satisfaction. In-clinic assessments (clinical and magnetic resonance imaging) were performed.

RESULTS

People with multiple sclerosis showed 70% (16.68/24 weeks) adherence to active tests and 79% (18.89/24 weeks) to passive monitoring; satisfaction score was on average 73.7 out of 100. Neither adherence nor satisfaction was associated with specific population characteristics. Test-battery assessments had an at least acceptable impact on daily activities in over 80% (61/72) of people with multiple sclerosis.

CONCLUSIONS

People with multiple sclerosis were engaged and satisfied with the FLOODLIGHT test battery. FLOODLIGHT sensor-based measures may enable continuous assessment of multiple sclerosis disease in clinical trials and real-world settings.

TRIAL REGISTRATION

ClinicalTrials.gov: NCT02952911; https://clinicaltrials.gov/ct2/show/NCT02952911.

摘要

背景

目前对多发性硬化症患者的临床评估是阶段性的,可能会遗漏就诊期间功能波动的关键特征。

目的

本研究的目的是评估在多发性硬化症患者中使用智能手机和智能手表技术进行远程主动测试和被动监测对于FLOODLIGHT测试组的依从性和满意度的可行性。

方法

多发性硬化症患者(年龄20至57岁;扩展残疾状态量表0 - 5.5;n = 76)和健康对照者(n = 25)使用智能手机和智能手表进行FLOODLIGHT测试组,包括主动测试(每日、每周、每两周或按需进行)和被动监测(基于传感器的步态和活动能力),为期24周。主要分析评估依从性(至少3天完成测试且每天4小时被动监测的周数比例)和基于问卷的满意度。进行了门诊评估(临床和磁共振成像)。

结果

多发性硬化症患者对主动测试的依从性为70%(16.68 / 24周),对被动监测的依从性为79%(18.89 / 24周);满意度平均得分为73.7(满分100分)。依从性和满意度均与特定人群特征无关。测试组评估对超过80%(61 / 72)的多发性硬化症患者的日常活动产生了至少可接受的影响。

结论

多发性硬化症患者参与了FLOODLIGHT测试组并对其感到满意。基于FLOODLIGHT传感器的测量方法可能有助于在临床试验和现实环境中对多发性硬化症疾病进行连续评估。

试验注册

ClinicalTrials.gov:NCT02952911;https://clinicaltrials.gov/ct2/show/NCT02952911

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a04f/6743265/0b205b4abcde/jmir_v21i8e14863_fig1.jpg

相似文献

2
A smartphone sensor-based digital outcome assessment of multiple sclerosis.
Mult Scler. 2022 Apr;28(4):654-664. doi: 10.1177/13524585211028561. Epub 2021 Jul 14.
7
Smartphone-Enhanced Symptom Management In Psychosis: Open, Randomized Controlled Trial.
J Med Internet Res. 2020 Aug 13;22(8):e17019. doi: 10.2196/17019.
10
Reliability and acceptance of dreaMS, a software application for people with multiple sclerosis: a feasibility study.
J Neurol. 2023 Jan;270(1):262-271. doi: 10.1007/s00415-022-11306-5. Epub 2022 Aug 30.

引用本文的文献

1
Experiences of People with Multiple Sclerosis in Sensor-Based Jump Assessment.
Bioengineering (Basel). 2025 Jun 3;12(6):610. doi: 10.3390/bioengineering12060610.
5
Long-term acceptability of MSReactor digital cognitive monitoring among people living with multiple sclerosis.
Mult Scler. 2025 Apr;31(5):595-606. doi: 10.1177/13524585251329035. Epub 2025 Apr 1.
6
Digital remote monitoring of people with multiple sclerosis.
Front Immunol. 2025 Feb 28;16:1514813. doi: 10.3389/fimmu.2025.1514813. eCollection 2025.
9
MRI versus relapse: optimal activity monitoring for management of progressive multiple sclerosis.
Brain Commun. 2025 Jan 20;7(1):fcaf010. doi: 10.1093/braincomms/fcaf010. eCollection 2025.

本文引用的文献

1
Identifying and Quantifying Neurological Disability via Smartphone.
Front Neurol. 2018 Sep 4;9:740. doi: 10.3389/fneur.2018.00740. eCollection 2018.
2
e-Health and multiple sclerosis: An update.
Mult Scler. 2018 Nov;24(13):1657-1664. doi: 10.1177/1352458518799629. Epub 2018 Sep 19.
4
Improving fatigue in multiple sclerosis by smartphone-supported energy management: The MS TeleCoach feasibility study.
Mult Scler Relat Disord. 2018 May;22:90-96. doi: 10.1016/j.msard.2018.03.020. Epub 2018 Mar 27.
5
Wearable biosensors to monitor disability in multiple sclerosis.
Neurol Clin Pract. 2017 Aug;7(4):354-362. doi: 10.1212/CPJ.0000000000000382.
7
Accuracy and precision of smartphone applications and commercially available motion sensors in multiple sclerosis.
Mult Scler J Exp Transl Clin. 2016 Mar 4;2:2055217316634754. doi: 10.1177/2055217316634754. eCollection 2016 Jan-Dec.
8
Processing speed test: Validation of a self-administered, iPad-based tool for screening cognitive dysfunction in a clinic setting.
Mult Scler. 2017 Dec;23(14):1929-1937. doi: 10.1177/1352458516688955. Epub 2017 Jan 12.
9
A Microsoft Kinect-Based Point-of-Care Gait Assessment Framework for Multiple Sclerosis Patients.
IEEE J Biomed Health Inform. 2017 Sep;21(5):1376-1385. doi: 10.1109/JBHI.2016.2593692. Epub 2016 Jul 21.
10
Evaluating more naturalistic outcome measures: A 1-year smartphone study in multiple sclerosis.
Neurol Neuroimmunol Neuroinflamm. 2015 Oct 15;2(6):e162. doi: 10.1212/NXI.0000000000000162. eCollection 2015 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验