Suppr超能文献

整合全基因组共同关联和基因表达,以鉴定猪饲料效率的潜在调控因子和预测因子。

Integrating genome-wide co-association and gene expression to identify putative regulators and predictors of feed efficiency in pigs.

机构信息

Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain.

Department of Animal Genetics, Centre for Research in Agricultural Genomics (CRAG), CSCIC-IRTA-UAB-UB, Campus de LA Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

出版信息

Genet Sel Evol. 2019 Sep 2;51(1):48. doi: 10.1186/s12711-019-0490-6.

Abstract

BACKGROUND

Feed efficiency (FE) has a major impact on the economic sustainability of pig production. We used a systems-based approach that integrates single nucleotide polymorphism (SNP) co-association and gene-expression data to identify candidate genes, biological pathways, and potential predictors of FE in a Duroc pig population.

RESULTS

We applied an association weight matrix (AWM) approach to analyse the results from genome-wide association studies (GWAS) for nine FE associated and production traits using 31K SNPs by defining residual feed intake (RFI) as the target phenotype. The resulting co-association network was formed by 829 SNPs. Additive effects of this SNP panel explained 61% of the phenotypic variance of RFI, and the resulting phenotype prediction accuracy estimated by cross-validation was 0.65 (vs. 0.20 using pedigree-based best linear unbiased prediction and 0.12 using the 31K SNPs). Sixty-eight transcription factor (TF) genes were identified in the co-association network; based on the lossless approach, the putative main regulators were COPS5, GTF2H5, RUNX1, HDAC4, ESR1, USP16, SMARCA2 and GTF2F2. Furthermore, gene expression data of the gluteus medius muscle was explored through differential expression and multivariate analyses. A list of candidate genes showing functional and/or structural associations with FE was elaborated based on results from both AWM and gene expression analyses, and included the aforementioned TF genes and other ones that have key roles in metabolism, e.g. ESRRG, RXRG, PPARGC1A, TCF7L2, LHX4, MAML2, NFATC3, NFKBIZ, TCEA1, CDCA7L, LZTFL1 or CBFB. The most enriched biological pathways in this list were associated with behaviour, immunity, nervous system, and neurotransmitters, including melatonin, glutamate receptor, and gustation pathways. Finally, an expression GWAS allowed identifying 269 SNPs associated with the candidate genes' expression (eSNPs). Addition of these eSNPs to the AWM panel of 829 SNPs did not improve the accuracy of genomic predictions.

CONCLUSIONS

Candidate genes that have a direct or indirect effect on FE-related traits belong to various biological processes that are mainly related to immunity, behaviour, energy metabolism, and the nervous system. The pituitary gland, hypothalamus and thyroid axis, and estrogen signalling play fundamental roles in the regulation of FE in pigs. The 829 selected SNPs explained 61% of the phenotypic variance of RFI, which constitutes a promising perspective for applying genetic selection on FE relying on molecular-based prediction.

摘要

背景

饲料效率(FE)对养猪生产的经济可持续性有重大影响。我们使用基于系统的方法,将单核苷酸多态性(SNP)共同关联和基因表达数据整合在一起,以鉴定杜洛克猪群体中 FE 的候选基因、生物途径和潜在预测因子。

结果

我们应用关联权重矩阵(AWM)方法,通过定义剩余饲料摄入量(RFI)为目标表型,对 9 个与 FE 相关和生产性状的全基因组关联研究(GWAS)结果进行分析,使用 31K SNP 定义。由此产生的共同关联网络由 829 个 SNP 组成。该 SNP 面板的加性效应解释了 RFI 表型方差的 61%,交叉验证估计的表型预测准确性为 0.65(使用基于系谱的最佳线性无偏预测为 0.20,使用 31K SNP 为 0.12)。在共同关联网络中鉴定出 68 个转录因子(TF)基因;基于无损方法,推测的主要调控因子为 COPS5、GTF2H5、RUNX1、HDAC4、ESR1、USP16、SMARCA2 和 GTF2F2。此外,通过差异表达和多变量分析探索了臀中肌的基因表达数据。根据 AWM 和基因表达分析的结果,列出了具有与 FE 功能和/或结构关联的候选基因,其中包括上述 TF 基因和其他在代谢中起关键作用的基因,例如 ESRRG、RXRG、PPARGC1A、TCF7L2、LHX4、MAML2、NFATC3、NFKBIZ、TCEA1、CDCA7L、LZTFL1 或 CBFB。该列表中最丰富的生物途径与行为、免疫、神经系统和神经递质有关,包括褪黑素、谷氨酸受体和味觉途径。最后,表达 GWAS 允许鉴定出 269 个与候选基因表达相关的 SNP(eSNP)。将这些 eSNP 添加到 829 个 SNP 的 AWM 面板中,并未提高基因组预测的准确性。

结论

直接或间接影响 FE 相关性状的候选基因属于各种生物学过程,主要与免疫、行为、能量代谢和神经系统有关。垂体、下丘脑和甲状腺轴以及雌激素信号在猪 FE 的调节中起着重要作用。选择的 829 个 SNP 解释了 RFI 表型方差的 61%,这为基于分子预测的 FE 应用遗传选择提供了有希望的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验