Yang Linlin, Meng Lingyan, Song Jiaying, Xiao Yue, Wang Ruowen, Kang Huaizhi, Han Da
Pen-Tung Sah Institute of Micro-Nano Science and Technology , Xiamen University , Xiamen , Fujian 361005 , China . Email:
College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , China.
Chem Sci. 2019 Jun 28;10(31):7466-7471. doi: 10.1039/c9sc02693b. eCollection 2019 Aug 21.
Cells use dynamic systems such as enzyme cascades and signaling networks to control cellular functions. Synthetic dynamic systems that can be target-responsive have great potential to be applied for biomedical applications but the operation of such dynamic systems in complex cellular environments remains challenging. Here, we engineered an aptamer and DNA displacement reaction-based dynamic system that can transform its nanostructure in response to the epithelial cell adhesion molecule (EpCAM) on live cell membranes. The dynamic system consisted of a core nanoparticle and small satellite nanoparticles. With the modifications of different DNA hairpin strands and swing arm strands partially hybridized with an aptamer that specifically recognizes the EpCAM, the two separated particles can dynamically assemble into a core-satellite assembly by aptamer-receptor interactions on the cell membrane surface. The structural change of the system from separated particles to a core-satellite assembly generated plasmonic coupled hot spots for surface-enhanced Raman scattering (SERS) for sensitively capturing the dynamic structural change of the nanoassembly in the cellular environment. These concepts provide strategies for engineering dynamic nanotechnology systems for biological and biomedical applications in complex biological environments.
细胞利用酶级联反应和信号网络等动态系统来控制细胞功能。具有靶标响应性的合成动态系统在生物医学应用中具有巨大的应用潜力,但此类动态系统在复杂细胞环境中的运行仍然具有挑战性。在此,我们构建了一种基于适配体和DNA置换反应的动态系统,该系统能够响应活细胞膜上的上皮细胞黏附分子(EpCAM)而改变其纳米结构。该动态系统由一个核心纳米颗粒和一些小的卫星纳米颗粒组成。通过对不同的DNA发夹链和与特异性识别EpCAM的适配体部分杂交的摆动臂链进行修饰,这两个分离的颗粒可以通过细胞膜表面的适配体-受体相互作用动态组装成核-卫星组装体。该系统从分离颗粒到核-卫星组装体的结构变化产生了用于表面增强拉曼散射(SERS)的等离子体耦合热点,以灵敏地捕获细胞环境中纳米组装体的动态结构变化。这些概念为在复杂生物环境中设计用于生物和生物医学应用的动态纳米技术系统提供了策略。