Intheon, 6020 Cornerstone Ct W Ste 220 San Diego, CA, 92121, USA; Department of Computer Science, University of Texas at San Antonio, One UTSA Circle, San Antonio, 78249, USA.
CCDC Army Research Laboratory, Human Research and Engineering Directorate, 7101 Mulberry Point Rd, Aberdeen Proving Ground, MD, 21005, USA.
Neuroimage. 2020 Feb 15;207:116054. doi: 10.1016/j.neuroimage.2019.116054. Epub 2019 Sep 4.
We present the results of a large-scale analysis of event-related responses based on raw EEG data from 17 studies performed at six experimental sites associated with four different institutions. The analysis corpus represents 1,155 recordings containing approximately 7.8 million event instances acquired under several different experimental paradigms. Such large-scale analysis is predicated on consistent data organization and event annotation as well as an effective automated preprocessing pipeline to transform raw EEG into a form suitable for comparative analysis. A key component of this analysis is the annotation of study-specific event codes using a common vocabulary to describe relevant event features. We demonstrate that Hierarchical Event Descriptors (HED tags) capture statistically significant cognitive aspects of EEG events common across multiple recordings, subjects, studies, paradigms, headset configurations, and experimental sites. We use representational similarity analysis (RSA) to show that EEG responses annotated with the same cognitive aspect are significantly more similar than those that do not share that cognitive aspect. These RSA similarity results are supported by visualizations that exploit the non-linear similarities of these associations. We apply temporal overlap regression, reducing confounds caused by adjacent event instances, to extract time and time-frequency EEG features (regressed ERPs and ERSPs) that are comparable across studies and replicate findings from prior, individual studies. Likewise, we use second-level linear regression to separate effects of different cognitive aspects on these features across all studies. This work demonstrates that EEG mega-analysis (pooling of raw data across studies) can enable investigations of brain dynamics in a more generalized fashion than single studies afford. A companion paper complements this event-based analysis by addressing commonality of the time and frequency statistical properties of EEG across studies at the channel and dipole level.
我们呈现了一项基于来自 6 个实验站点的 17 项研究的原始 EEG 数据的大规模事件相关反应分析的结果,这些研究与 4 个不同的机构有关。分析语料库代表了 1155 个记录,其中包含了在几个不同的实验范式下采集的大约 780 万个事件实例。这种大规模的分析是基于一致的数据组织和事件标注以及有效的自动化预处理管道,将原始 EEG 转换为适合比较分析的形式。该分析的一个关键组成部分是使用通用词汇表来标注特定于研究的事件代码,以描述相关的事件特征。我们证明了层次化事件描述符(HED 标签)可以捕捉到 EEG 事件在多个记录、受试者、研究、范式、耳机配置和实验地点之间共有的统计上显著的认知方面。我们使用表示相似性分析(RSA)来表明,用相同认知方面标注的 EEG 响应比那些没有共享该认知方面的响应更相似。这些 RSA 相似性结果得到了可视化的支持,这些可视化利用了这些关联的非线性相似性。我们应用时间重叠回归,减少相邻事件实例引起的混淆,提取可在研究之间比较的时间和时频 EEG 特征(回归 ERP 和 ERSP),并复制先前单个研究的发现。同样,我们使用二级线性回归来分离不同认知方面对这些特征的影响,以跨所有研究进行分析。这项工作表明,EEG 大型分析(在研究之间汇总原始数据)可以使大脑动态的研究更加普遍,而不仅仅是单个研究。一篇配套的论文通过在通道和偶极子水平上解决 EEG 在研究之间的时间和频率统计属性的共性,补充了基于事件的分析。