Tapley Byron D, Watkins Michael M, Flechtner Frank, Reigber Christoph, Bettadpur Srinivas, Rodell Matthew, Sasgen Ingo, Famiglietti James S, Landerer Felix W, Chambers Don P, Reager John T, Gardner Alex S, Save Himanshu, Ivins Erik R, Swenson Sean C, Boening Carmen, Dahle Christoph, Wiese David N, Dobslaw Henryk, Tamisiea Mark E, Velicogna Isabella
Center for Space Research, University of Texas, 3825 Breaker Lane, Suite 200, Austin, Texas 78759, USA.
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA.
Nat Clim Chang. 2019 Apr 15;5(5):358-369. doi: 10.1038/s41558-019-0456-2.
Time-resolved satellite gravimetry has revolutionized understanding of mass transport in the Earth system. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled monitoring of the terrestrial water cycle, ice sheet and glacier mass balance, sea level change and ocean bottom pressure variations and understanding responses to changes in the global climate system. Initially a pioneering experiment of geodesy, the time-variable observations have matured into reliable mass transport products, allowing assessment and forecast of a number of important climate trends and improve service applications such as the U.S. Drought Monitor. With the successful launch of the GRACE Follow-On mission, a multi decadal record of mass variability in the Earth system is within reach.
时间分辨卫星重力测量彻底改变了人们对地球系统中质量传输的理解。自2002年以来,重力恢复与气候实验(GRACE)使得对陆地水循环、冰盖和冰川质量平衡、海平面变化以及海底压力变化的监测成为可能,并有助于理解全球气候系统变化的响应。最初作为大地测量学的一项开创性实验,这些随时间变化的观测已发展成为可靠的质量传输产品,能够对一些重要的气候趋势进行评估和预测,并改善诸如美国干旱监测等服务应用。随着GRACE后续任务的成功发射,获取地球系统中质量变化的数十年记录指日可待。