Suppr超能文献

重新配置用于联合手动和 BCI 任务的运动回路。

Reconfiguring Motor Circuits for a Joint Manual and BCI Task.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Jan;28(1):248-257. doi: 10.1109/TNSRE.2019.2944347. Epub 2019 Sep 27.

Abstract

Designing brain-computer interfaces (BCIs) that can be used in conjunction with ongoing motor behavior requires an understanding of how neural activity co-opted for brain control interacts with existing neural circuits. For example, BCIs may be used to regain lost motor function after stroke. This requires that neural activity controlling unaffected limbs is dissociated from activity controlling the BCI. In this study we investigated how primary motor cortex accomplishes simultaneous BCI control and motor control in a task that explicitly required both activities to be driven from the same brain region (i.e. a dual-control task). Single-unit activity was recorded from intracortical, multi-electrode arrays while a non-human primate performed this dual-control task. Compared to activity observed during naturalistic motor control, we found that both units used to drive the BCI directly (control units) and units that did not directly control the BCI (non-control units) significantly changed their tuning to wrist torque. Using a measure of effective connectivity, we observed that control units decrease their connectivity. Through an analysis of variance we found that the intrinsic variability of the control units has a significant effect on task proficiency. When this variance is accounted for, motor cortical activity is flexible enough to perform novel BCI tasks that require active decoupling of natural associations to wrist motion. This study provides insight into the neural activity that enables a dual-control brain-computer interface.

摘要

设计可与正在进行的运动行为结合使用的脑机接口 (BCI) 需要了解用于大脑控制的神经活动如何与现有神经回路相互作用。例如,BCI 可用于在中风后恢复失去的运动功能。这要求控制未受影响肢体的神经活动与控制 BCI 的活动分离。在这项研究中,我们研究了初级运动皮层如何在一项明确要求两种活动都来自同一大脑区域的任务中同时完成 BCI 控制和运动控制(即双重控制任务)。当非人类灵长类动物执行此双重控制任务时,我们从颅内多电极阵列记录单个单元的活动。与在自然运动控制期间观察到的活动相比,我们发现直接用于驱动 BCI 的两个单元(控制单元)和未直接控制 BCI 的单元(非控制单元)都显著改变了它们对腕力矩的调谐。使用有效连通性的度量,我们观察到控制单元降低了它们的连通性。通过方差分析,我们发现控制单元的固有变异性对任务熟练程度有显著影响。当考虑到这种变异性时,运动皮层活动具有足够的灵活性,可以执行需要主动分离与手腕运动的自然关联的新型 BCI 任务。这项研究提供了对实现双重控制脑机接口的神经活动的深入了解。

相似文献

1
Reconfiguring Motor Circuits for a Joint Manual and BCI Task.重新配置用于联合手动和 BCI 任务的运动回路。
IEEE Trans Neural Syst Rehabil Eng. 2020 Jan;28(1):248-257. doi: 10.1109/TNSRE.2019.2944347. Epub 2019 Sep 27.
2
Simultaneous and independent control of a brain-computer interface and contralateral limb movement.脑机接口与对侧肢体运动的同步独立控制。
Brain Comput Interfaces (Abingdon). 2015;2(4):174-185. doi: 10.1080/2326263X.2015.1080961. Epub 2015 Sep 14.
3
Brain-computer interface control along instructed paths.沿指示路径的脑机接口控制
J Neural Eng. 2015 Feb;12(1):016015. doi: 10.1088/1741-2560/12/1/016015. Epub 2015 Jan 21.
5
Concurrent control of a brain-computer interface and natural overt movements.脑机接口与自然运动的并发控制。
J Neural Eng. 2018 Dec;15(6):066021. doi: 10.1088/1741-2552/aadf3d. Epub 2018 Oct 10.
7
Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.使用任务特定子空间进行虚拟自我运动的皮质控制。
J Neurosci. 2022 Jan 12;42(2):220-239. doi: 10.1523/JNEUROSCI.2687-20.2021. Epub 2021 Oct 29.
9
A muscle-activity-dependent gain between motor cortex and EMG.运动皮层与肌电图之间的肌肉活动相关增益。
J Neurophysiol. 2019 Jan 1;121(1):61-73. doi: 10.1152/jn.00329.2018. Epub 2018 Oct 31.

本文引用的文献

4
Simultaneous and independent control of a brain-computer interface and contralateral limb movement.脑机接口与对侧肢体运动的同步独立控制。
Brain Comput Interfaces (Abingdon). 2015;2(4):174-185. doi: 10.1080/2326263X.2015.1080961. Epub 2015 Sep 14.
8
Clinical translation of a high-performance neural prosthesis.高性能神经假体的临床转化。
Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28.
10
Neural constraints on learning.学习中的神经限制
Nature. 2014 Aug 28;512(7515):423-6. doi: 10.1038/nature13665.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验