文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于金属基纳米粒子的缺氧肿瘤放射治疗策略。

Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy.

作者信息

Zhang Chenyang, Yan Liang, Gu Zhanjun, Zhao Yuliang

机构信息

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China . Email:

College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China.

出版信息

Chem Sci. 2019 Jun 11;10(29):6932-6943. doi: 10.1039/c9sc02107h. eCollection 2019 Aug 7.


DOI:10.1039/c9sc02107h
PMID:31588260
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6676466/
Abstract

Radiotherapy (RT) is one of the most effective and frequent clinical cancer treatments. Nevertheless, RT can cause damage to normal tissues around tumors under high-dose ionizing radiation. Inspired by versatile metal-based nanomaterials, great efforts have been devoted to developing nanomaterials with high-Z metal elements as radiosensitizers by depositing more energy into tumors for RT enhancement. However, these metal-based nanomaterial-mediated RTs are highly O-dependent. Unfortunately, O concentrations within the majority of solid tumors exhibit low levels, which seriously hampers the antitumor efficacy of these nanomaterials during RT. Therefore, the development of novel metal-based nanomaterials as radiosensitizers capable of avoiding the radioresistance induced by tumor hypoxia is highly desirable and important. Currently, the most effective approaches to reverse the radioresistance of hypoxic tumors are to introduce nanomaterials with O-elevating ability by delivering exogenous O, generating O , increasing intratumoral blood flow, or reducing HIF-1 expression to harness the O level in solid tumors. Besides these, recently, some innovative and simple strategies by employing nanoradiosensitizers with diminished oxygen dependence have also been applied to combat unmet hypoxic challenges, in which nanoradiosensitizers can target tumor hypoxia for selective RT, enhance oxygen-independent ROS generation, or combine with non-oxygen dependent cancer therapies for synergistic treatments. These approaches and strategies provide new avenues for enhanced hypoxic-tumor RT. Nevertheless, an overall review aiming specifically at these strategies is still rare. Herein, we present an overview about recent advances in metal-based nanomaterials for hypoxic-tumor RT, and give a detailed discussion about the design and working mechanisms of these strategies in their application of RT. Finally, current challenges and future perspectives are also pointed out in this field.

摘要

放射治疗(RT)是临床上最有效且常用的癌症治疗方法之一。然而,在高剂量电离辐射下,放疗会对肿瘤周围的正常组织造成损伤。受多功能金属基纳米材料的启发,人们致力于开发以高Z金属元素为放射增敏剂的纳米材料,通过在肿瘤中沉积更多能量来增强放疗效果。然而,这些金属基纳米材料介导的放疗对氧高度依赖。不幸的是,大多数实体瘤内的氧浓度较低,这严重阻碍了这些纳米材料在放疗期间的抗肿瘤疗效。因此,开发新型金属基纳米材料作为放射增敏剂,以避免肿瘤缺氧引起的放射抗性,是非常必要且重要的。目前,逆转缺氧肿瘤放射抗性最有效的方法是通过输送外源性氧、产生氧、增加肿瘤内血流量或降低缺氧诱导因子-1(HIF-1)表达来引入具有提高氧水平能力的纳米材料,以控制实体瘤中的氧水平。除此之外,最近,一些采用氧依赖性降低的纳米放射增敏剂的创新且简单的策略也已被应用于应对未满足的缺氧挑战,其中纳米放射增敏剂可以靶向肿瘤缺氧进行选择性放疗,增强不依赖氧的活性氧生成,或与不依赖氧的癌症治疗方法联合进行协同治疗。这些方法和策略为增强缺氧肿瘤放疗提供了新途径。然而,专门针对这些策略的全面综述仍然很少。在此,我们概述了用于缺氧肿瘤放疗的金属基纳米材料的最新进展,并详细讨论了这些策略在放疗应用中的设计和作用机制。最后,还指出了该领域当前面临的挑战和未来的发展前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/9b460768e361/c9sc02107h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/218fdd1f3ff9/c9sc02107h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/30dc9a9ed3bb/c9sc02107h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/f7a1abcfc0ea/c9sc02107h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/c162bc18d6a1/c9sc02107h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/1d5843700158/c9sc02107h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/9b460768e361/c9sc02107h-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/218fdd1f3ff9/c9sc02107h-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/30dc9a9ed3bb/c9sc02107h-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/f7a1abcfc0ea/c9sc02107h-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/c162bc18d6a1/c9sc02107h-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/1d5843700158/c9sc02107h-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a39b/6676466/9b460768e361/c9sc02107h-f6.jpg

相似文献

[1]
Strategies based on metal-based nanoparticles for hypoxic-tumor radiotherapy.

Chem Sci. 2019-6-11

[2]
Multifunctional high- nanoradiosensitizers for multimodal synergistic cancer therapy.

J Mater Chem B. 2022-3-2

[3]
Emerging Bismuth Chalcogenides Based Nanodrugs for Cancer Radiotherapy.

Front Pharmacol. 2022-2-18

[4]
Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?

Acta Biomater. 2021-4-15

[5]
Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.

Acc Chem Res. 2020-9-15

[6]
Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization.

Adv Mater. 2018-8-29

[7]
hypoxia modulating nano-catalase for amplifying DNA damage in radiation resistive colon tumors.

Biomater Sci. 2023-9-12

[8]
Modulating Hypoxia via Nanomaterials Chemistry for Efficient Treatment of Solid Tumors.

Acc Chem Res. 2018-9-20

[9]
Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy.

Small Methods. 2024-1

[10]
Catalase-like metal-organic framework nanoparticles to enhance radiotherapy in hypoxic cancer and prevent cancer recurrence.

Chem Sci. 2019-4-25

引用本文的文献

[1]
Radiosensitization of Rare-Earth Nanoparticles Based on the Consistency Between Its K-Edge and the X-Ray Bremsstrahlung Peak.

J Funct Biomater. 2025-1-24

[2]
Application of Multifunctional Metal Nanoparticles in the Treatment of Glioma.

Int J Nanomedicine. 2025-1-16

[3]
State-of-the-art application of nanoparticles in radiotherapy: a platform for synergistic effects in cancer treatment.

Strahlenther Onkol. 2024-10-4

[4]
Metal-based nanoparticle in cancer treatment: lessons learned and challenges.

Front Bioeng Biotechnol. 2024-7-11

[5]
Application of Multifunctional Nanozymes in Tumor Therapy.

ACS Omega. 2024-3-26

[6]
Improving the Efficacy of Common Cancer Treatments via Targeted Therapeutics towards the Tumour and Its Microenvironment.

Pharmaceutics. 2024-1-26

[7]
Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes.

Nanomicro Lett. 2023-11-21

[8]
AZD7648, a DNA-PKcs inhibitor, overcomes radioresistance in Hep3B xenografts and cells under tumor hypoxia.

Am J Cancer Res. 2023-10-15

[9]
Inorganic Nanoparticles as Radiosensitizers for Cancer Treatment.

Nanomaterials (Basel). 2023-10-30

[10]
The Refined Application and Evolution of Nanotechnology in Enhancing Radiosensitivity During Radiotherapy: Transitioning from Gold Nanoparticles to Multifunctional Nanomaterials.

Int J Nanomedicine. 2023

本文引用的文献

[1]
Near infrared light triggered nitric oxide releasing platform based on upconversion nanoparticles for synergistic therapy of cancer stem-like cells.

Sci Bull (Beijing). 2017-7-30

[2]
Low-dose X-ray radiotherapy-radiodynamic therapy via nanoscale metal-organic frameworks enhances checkpoint blockade immunotherapy.

Nat Biomed Eng. 2018-3-26

[3]
Efficient Near Infrared Light Triggered Nitric Oxide Release Nanocomposites for Sensitizing Mild Photothermal Therapy.

Adv Sci (Weinh). 2018-12-11

[4]
Tumor Microenvironment-Responsive Cu(OH)PO Nanocrystals for Selective and Controllable Radiosentization via the X-ray-Triggered Fenton-like Reaction.

Nano Lett. 2019-2-20

[5]
Nanoparticle-mediated internal radioisotope therapy to locally increase the tumor vasculature permeability for synergistically improved cancer therapies.

Biomaterials. 2019-1-21

[6]
Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement.

Biomaterials. 2018-10-15

[7]
X-Ray-Controlled Generation of Peroxynitrite Based on Nanosized LiLuF :Ce Scintillators and their Applications for Radiosensitization.

Adv Mater. 2018-9-10

[8]
Self-Supplied Tumor Oxygenation through Separated Liposomal Delivery of HO and Catalase for Enhanced Radio-Immunotherapy of Cancer.

Nano Lett. 2018-9-27

[9]
Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization.

Adv Mater. 2018-8-29

[10]
Tumor Oxygenation and Hypoxia Inducible Factor-1 Functional Inhibition via a Reactive Oxygen Species Responsive Nanoplatform for Enhancing Radiation Therapy and Abscopal Effects.

ACS Nano. 2018-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索