Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, New York; Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York; Department of Cardiovascular Medicine, National Heart Centre, Singapore.
Dalio Institute of Cardiovascular Imaging, Weill Cornell Medicine, New York, New York.
JACC Cardiovasc Imaging. 2020 May;13(5):1163-1171. doi: 10.1016/j.jcmg.2019.08.025. Epub 2019 Oct 11.
This study designed and evaluated an end-to-end deep learning solution for cardiac segmentation and quantification.
Segmentation of cardiac structures from coronary computed tomography angiography (CCTA) images is laborious. We designed an end-to-end deep-learning solution.
Scans were obtained from multicenter registries of 166 patients who underwent clinically indicated CCTA. Left ventricular volume (LVV) and right ventricular volume (RVV), left atrial volume (LAV) and right atrial volume (RAV), and left ventricular myocardial mass (LVM) were manually annotated as ground truth. A U-Net-inspired, deep-learning model was trained, validated, and tested in a 70:20:10 split.
Mean age was 61.1 ± 8.4 years, and 49% were women. A combined overall median Dice score of 0.9246 (interquartile range: 0.8870 to 0.9475) was achieved. The median Dice scores for LVV, RVV, LAV, RAV, and LVM were 0.938 (interquartile range: 0.887 to 0.958), 0.927 (interquartile range: 0.916 to 0.946), 0.934 (interquartile range: 0.899 to 0.950), 0.915 (interquartile range: 0.890 to 0.920), and 0.920 (interquartile range: 0.811 to 0.944), respectively. Model prediction correlated and agreed well with manual annotation for LVV (r = 0.98), RVV (r = 0.97), LAV (r = 0.78), RAV (r = 0.97), and LVM (r = 0.94) (p < 0.05 for all). Mean difference and limits of agreement for LVV, RVV, LAV, RAV, and LVM were 1.20 ml (95% CI: -7.12 to 9.51), -0.78 ml (95% CI: -10.08 to 8.52), -3.75 ml (95% CI: -21.53 to 14.03), 0.97 ml (95% CI: -6.14 to 8.09), and 6.41 g (95% CI: -8.71 to 21.52), respectively.
A deep-learning model rapidly segmented and quantified cardiac structures. This was done with high accuracy on a pixel level, with good agreement with manual annotation, facilitating its expansion into areas of research and clinical import.
本研究设计并评估了一种用于心脏分割和定量的端到端深度学习解决方案。
从冠状动脉 CT 血管造影(CCTA)图像中分割心脏结构非常繁琐。我们设计了一种端到端的深度学习解决方案。
从接受临床指示的 CCTA 的 166 名患者的多中心注册中心获得扫描。左心室容积(LVV)和右心室容积(RVV)、左心房容积(LAV)和右心房容积(RAV)以及左心室心肌质量(LVM)被手动注释为真实值。使用 U-Net 启发式的深度学习模型进行训练、验证和测试,分割结果分为 70:20:10 进行划分。
平均年龄为 61.1±8.4 岁,49%为女性。总体中位数 Dice 评分为 0.9246(四分位距:0.8870 至 0.9475)。LVV、RVV、LAV、RAV 和 LVM 的中位数 Dice 评分分别为 0.938(四分位距:0.887 至 0.958)、0.927(四分位距:0.916 至 0.946)、0.934(四分位距:0.899 至 0.950)、0.915(四分位距:0.890 至 0.920)和 0.920(四分位距:0.811 至 0.944)。模型预测与 LVV(r=0.98)、RVV(r=0.97)、LAV(r=0.78)、RAV(r=0.97)和 LVM(r=0.94)的手动注释相关性良好且吻合度高(均 p<0.05)。LVV、RVV、LAV、RAV 和 LVM 的平均差值和一致性界限分别为 1.20ml(95%CI:-7.12 至 9.51)、-0.78ml(95%CI:-10.08 至 8.52)、-3.75ml(95%CI:-21.53 至 14.03)、0.97ml(95%CI:-6.14 至 8.09)和 6.41g(95%CI:-8.71 至 21.52)。
深度学习模型可快速分割和定量心脏结构。该模型在像素水平上具有高精度,与手动注释具有良好的一致性,有助于将其扩展到研究和临床领域。