From the Blood Research Institute, Versiti, Blood Center of Wisconsin, Milwaukee (Y.C., W.H., Y.Z., M.L.S., Z.G., W. Cui, S.M., R.L.S.).
Department of Biochemistry (M.Y., B.C.S.), Medical College of Wisconsin, Milwaukee.
Circ Res. 2019 Dec 6;125(12):1087-1102. doi: 10.1161/CIRCRESAHA.119.315833. Epub 2019 Oct 18.
A hallmark of chronic inflammatory disorders is persistence of proinflammatory macrophages in diseased tissues. In atherosclerosis, this is associated with dyslipidemia and oxidative stress, but mechanisms linking these phenomena to macrophage activation remain incompletely understood.
To investigate mechanisms linking dyslipidemia, oxidative stress, and macrophage activation through modulation of immunometabolism and to explore therapeutic potential targeting specific metabolic pathways.
Using a combination of biochemical, immunologic, and ex vivo cell metabolic studies, we report that CD36 mediates a mitochondrial metabolic switch from oxidative phosphorylation to superoxide production in response to its ligand, oxidized LDL (low-density lipoprotein). Mitochondrial-specific inhibition of superoxide inhibited oxidized LDL-induced NF-κB (nuclear factor-κB) activation and inflammatory cytokine generation. RNA sequencing, flow cytometry, 3H-labeled palmitic acid uptake, lipidomic analysis, confocal and electron microscopy imaging, and functional energetics revealed that oxidized LDL upregulated effectors of long-chain fatty acid uptake and mitochondrial import, while downregulating fatty acid oxidation and inhibiting ATP5A (ATP synthase F1 subunit alpha)-an electron transport chain component. The combined effect is long-chain fatty acid accumulation, alteration of mitochondrial structure and function, repurposing of the electron transport chain to superoxide production, and NF-κB activation. null mice challenged with high-fat diet showed similar metabolic changes in circulating Ly6C monocytes and peritoneal macrophages, along with increased CD36 expression. Moreover, mitochondrial reactive oxygen species were positively correlated with CD36 expression in aortic lesional macrophages.
These findings reveal that oxidized LDL/CD36 signaling in macrophages links dysregulated fatty acid metabolism to oxidative stress from the mitochondria, which drives chronic inflammation. Thus, targeting to CD36 and its downstream effectors may serve as potential new strategies against chronic inflammatory diseases such as atherosclerosis.
慢性炎症性疾病的一个标志是病变组织中促炎巨噬细胞的持续存在。在动脉粥样硬化中,这与血脂异常和氧化应激有关,但将这些现象与巨噬细胞激活联系起来的机制仍不完全清楚。
通过调节免疫代谢来研究将血脂异常、氧化应激和巨噬细胞激活联系起来的机制,并探索针对特定代谢途径的治疗潜力。
我们使用生化、免疫和体外细胞代谢研究的组合,报告 CD36 介导了从氧化磷酸化到超氧化物产生的线粒体代谢转换,作为其配体氧化 LDL(低密度脂蛋白)的反应。线粒体特异性的超氧化物抑制抑制了氧化 LDL 诱导的 NF-κB(核因子-κB)激活和炎症细胞因子的产生。RNA 测序、流式细胞术、3H 标记棕榈酸摄取、脂质组学分析、共聚焦和电子显微镜成像以及功能能量学揭示,氧化 LDL 上调了长链脂肪酸摄取和线粒体导入的效应物,同时下调了脂肪酸氧化并抑制了 ATP5A(ATP 合酶 F1 亚基 α)-电子传递链成分。综合作用是长链脂肪酸积累、线粒体结构和功能改变、电子传递链重新用于超氧化物产生和 NF-κB 激活。用高脂肪饮食挑战的 null 小鼠在循环 Ly6C 单核细胞和腹膜巨噬细胞中表现出类似的代谢变化,同时 CD36 表达增加。此外,线粒体活性氧与主动脉病变巨噬细胞中的 CD36 表达呈正相关。
这些发现表明,巨噬细胞中氧化 LDL/CD36 信号转导将脂肪酸代谢失调与线粒体产生的氧化应激联系起来,从而驱动慢性炎症。因此,针对 CD36 及其下游效应物可能是针对动脉粥样硬化等慢性炎症性疾病的潜在新策略。