Suppr超能文献

CD36 信号驱动的线粒体代谢重编程促进巨噬细胞炎症反应。

Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses.

机构信息

From the Blood Research Institute, Versiti, Blood Center of Wisconsin, Milwaukee (Y.C., W.H., Y.Z., M.L.S., Z.G., W. Cui, S.M., R.L.S.).

Department of Biochemistry (M.Y., B.C.S.), Medical College of Wisconsin, Milwaukee.

出版信息

Circ Res. 2019 Dec 6;125(12):1087-1102. doi: 10.1161/CIRCRESAHA.119.315833. Epub 2019 Oct 18.

Abstract

RATIONALE

A hallmark of chronic inflammatory disorders is persistence of proinflammatory macrophages in diseased tissues. In atherosclerosis, this is associated with dyslipidemia and oxidative stress, but mechanisms linking these phenomena to macrophage activation remain incompletely understood.

OBJECTIVE

To investigate mechanisms linking dyslipidemia, oxidative stress, and macrophage activation through modulation of immunometabolism and to explore therapeutic potential targeting specific metabolic pathways.

METHODS AND RESULTS

Using a combination of biochemical, immunologic, and ex vivo cell metabolic studies, we report that CD36 mediates a mitochondrial metabolic switch from oxidative phosphorylation to superoxide production in response to its ligand, oxidized LDL (low-density lipoprotein). Mitochondrial-specific inhibition of superoxide inhibited oxidized LDL-induced NF-κB (nuclear factor-κB) activation and inflammatory cytokine generation. RNA sequencing, flow cytometry, 3H-labeled palmitic acid uptake, lipidomic analysis, confocal and electron microscopy imaging, and functional energetics revealed that oxidized LDL upregulated effectors of long-chain fatty acid uptake and mitochondrial import, while downregulating fatty acid oxidation and inhibiting ATP5A (ATP synthase F1 subunit alpha)-an electron transport chain component. The combined effect is long-chain fatty acid accumulation, alteration of mitochondrial structure and function, repurposing of the electron transport chain to superoxide production, and NF-κB activation. null mice challenged with high-fat diet showed similar metabolic changes in circulating Ly6C monocytes and peritoneal macrophages, along with increased CD36 expression. Moreover, mitochondrial reactive oxygen species were positively correlated with CD36 expression in aortic lesional macrophages.

CONCLUSIONS

These findings reveal that oxidized LDL/CD36 signaling in macrophages links dysregulated fatty acid metabolism to oxidative stress from the mitochondria, which drives chronic inflammation. Thus, targeting to CD36 and its downstream effectors may serve as potential new strategies against chronic inflammatory diseases such as atherosclerosis.

摘要

背景

慢性炎症性疾病的一个标志是病变组织中促炎巨噬细胞的持续存在。在动脉粥样硬化中,这与血脂异常和氧化应激有关,但将这些现象与巨噬细胞激活联系起来的机制仍不完全清楚。

目的

通过调节免疫代谢来研究将血脂异常、氧化应激和巨噬细胞激活联系起来的机制,并探索针对特定代谢途径的治疗潜力。

方法和结果

我们使用生化、免疫和体外细胞代谢研究的组合,报告 CD36 介导了从氧化磷酸化到超氧化物产生的线粒体代谢转换,作为其配体氧化 LDL(低密度脂蛋白)的反应。线粒体特异性的超氧化物抑制抑制了氧化 LDL 诱导的 NF-κB(核因子-κB)激活和炎症细胞因子的产生。RNA 测序、流式细胞术、3H 标记棕榈酸摄取、脂质组学分析、共聚焦和电子显微镜成像以及功能能量学揭示,氧化 LDL 上调了长链脂肪酸摄取和线粒体导入的效应物,同时下调了脂肪酸氧化并抑制了 ATP5A(ATP 合酶 F1 亚基 α)-电子传递链成分。综合作用是长链脂肪酸积累、线粒体结构和功能改变、电子传递链重新用于超氧化物产生和 NF-κB 激活。用高脂肪饮食挑战的 null 小鼠在循环 Ly6C 单核细胞和腹膜巨噬细胞中表现出类似的代谢变化,同时 CD36 表达增加。此外,线粒体活性氧与主动脉病变巨噬细胞中的 CD36 表达呈正相关。

结论

这些发现表明,巨噬细胞中氧化 LDL/CD36 信号转导将脂肪酸代谢失调与线粒体产生的氧化应激联系起来,从而驱动慢性炎症。因此,针对 CD36 及其下游效应物可能是针对动脉粥样硬化等慢性炎症性疾病的潜在新策略。

相似文献

1
Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses.
Circ Res. 2019 Dec 6;125(12):1087-1102. doi: 10.1161/CIRCRESAHA.119.315833. Epub 2019 Oct 18.
2
Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.
Circ Res. 2014 Jan 31;114(3):421-33. doi: 10.1161/CIRCRESAHA.114.302153. Epub 2013 Dec 2.
3
Cardiotonic Steroids Stimulate Macrophage Inflammatory Responses Through a Pathway Involving CD36, TLR4, and Na/K-ATPase.
Arterioscler Thromb Vasc Biol. 2017 Aug;37(8):1462-1469. doi: 10.1161/ATVBAHA.117.309444. Epub 2017 Jun 15.
5
Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling.
Am J Physiol Heart Circ Physiol. 2013 Aug 15;305(4):H563-74. doi: 10.1152/ajpheart.00042.2013. Epub 2013 Jun 7.
6
Sorting Nexin 10 Mediates Metabolic Reprogramming of Macrophages in Atherosclerosis Through the Lyn-Dependent TFEB Signaling Pathway.
Circ Res. 2020 Jul 31;127(4):534-549. doi: 10.1161/CIRCRESAHA.119.315516. Epub 2020 Apr 22.
7
CD36 and Na/K-ATPase-α1 form a proinflammatory signaling loop in kidney.
Hypertension. 2013 Jan;61(1):216-24. doi: 10.1161/HYPERTENSIONAHA.112.198770. Epub 2012 Nov 19.
8
Dicer in Macrophages Prevents Atherosclerosis by Promoting Mitochondrial Oxidative Metabolism.
Circulation. 2018 Oct 30;138(18):2007-2020. doi: 10.1161/CIRCULATIONAHA.117.031589.
10
WISP1 alleviates lipid deposition in macrophages via the PPARγ/CD36 pathway in the plaque formation of atherosclerosis.
J Cell Mol Med. 2020 Oct;24(20):11729-11741. doi: 10.1111/jcmm.15783. Epub 2020 Aug 27.

引用本文的文献

1
Polarization of Tumor Cells and Tumor-Associated Macrophages: Molecular Mechanisms and Therapeutic Targets.
MedComm (2020). 2025 Sep 1;6(9):e70372. doi: 10.1002/mco2.70372. eCollection 2025 Sep.
2
Lipid overload meets S-palmitoylation: a metabolic signalling nexus driving cardiovascular and heart disease.
Cell Commun Signal. 2025 Sep 2;23(1):392. doi: 10.1186/s12964-025-02398-3.
3
The osteosarcoma immune microenvironment in progression: PLEK as a prognostic biomarker and therapeutic target.
Front Immunol. 2025 Aug 15;16:1651858. doi: 10.3389/fimmu.2025.1651858. eCollection 2025.
5
Mitochondrial ROS drive foam cell formation via STAT5 signaling in atherosclerosis.
Sci Adv. 2025 Aug 29;11(35):eadw9952. doi: 10.1126/sciadv.adw9952. Epub 2025 Aug 27.
6
Palmitic acid and palmitoylation in cancer: Understanding, insights, and challenges.
Innovation (Camb). 2025 Apr 29;6(8):100918. doi: 10.1016/j.xinn.2025.100918. eCollection 2025 Aug 4.
8
Advances in the regulation of macrophage polarization by the tumor microenvironment.
Discov Oncol. 2025 Aug 6;16(1):1487. doi: 10.1007/s12672-025-03258-9.
9
Oxidized phospholipid damage signals as modulators of immunity.
Open Biol. 2025 Jul;15(7):240391. doi: 10.1098/rsob.240391. Epub 2025 Jul 30.

本文引用的文献

1
Molecular mechanisms and genetic regulation in atherosclerosis.
Int J Cardiol Heart Vasc. 2018 Sep 25;21:36-44. doi: 10.1016/j.ijcha.2018.09.006. eCollection 2018 Dec.
2
Methods for imaging mammalian mitochondrial morphology: A prospective on MitoGraph.
Anal Biochem. 2018 Jul 1;552:81-99. doi: 10.1016/j.ab.2018.02.022. Epub 2018 Mar 2.
3
Network analysis reveals a causal role of mitochondrial gene activity in atherosclerotic lesion formation.
Atherosclerosis. 2017 Dec;267:39-48. doi: 10.1016/j.atherosclerosis.2017.10.019. Epub 2017 Oct 21.
4
Mitochondrial Respiration Is Reduced in Atherosclerosis, Promoting Necrotic Core Formation and Reducing Relative Fibrous Cap Thickness.
Arterioscler Thromb Vasc Biol. 2017 Dec;37(12):2322-2332. doi: 10.1161/ATVBAHA.117.310042. Epub 2017 Sep 28.
5
MitoNeoD: A Mitochondria-Targeted Superoxide Probe.
Cell Chem Biol. 2017 Oct 19;24(10):1285-1298.e12. doi: 10.1016/j.chembiol.2017.08.003. Epub 2017 Sep 7.
6
Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease.
Front Physiol. 2017 Jun 27;8:428. doi: 10.3389/fphys.2017.00428. eCollection 2017.
7
Mitochondria are the powerhouses of immunity.
Nat Immunol. 2017 Apr 18;18(5):488-498. doi: 10.1038/ni.3704.
9
Targeting metastasis-initiating cells through the fatty acid receptor CD36.
Nature. 2017 Jan 5;541(7635):41-45. doi: 10.1038/nature20791. Epub 2016 Dec 7.
10
Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages.
Cell. 2016 Oct 6;167(2):457-470.e13. doi: 10.1016/j.cell.2016.08.064. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验