文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

经颅随机噪声刺激(tRNS):增加皮质兴奋性需要广泛的频率范围。

Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability.

机构信息

Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131, Padova, Italy.

Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121, Padova, Italy.

出版信息

Sci Rep. 2019 Oct 22;9(1):15150. doi: 10.1038/s41598-019-51553-7.


DOI:10.1038/s41598-019-51553-7
PMID:31641235
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6806007/
Abstract

Transcranial random noise stimulation (tRNS) is a recent neuromodulation protocol. The high-frequency band (hf-tRNS) has shown to be the most effective in enhancing neural excitability. The frequency band of hf-tRNS typically spans from 100 to 640 Hz. Here we asked whether both the lower and the higher half of the high-frequency band are needed for increasing neural excitability. Three frequency ranges (100-400 Hz, 400-700 Hz, 100-700 Hz) and Sham conditions were delivered for 10 minutes at an intensity of 1.5 mA over the primary motor cortex (M1). Single-pulse transcranial magnetic stimulation (TMS) was delivered over the same area at baseline, 0, 10, 20, 30, 45 and 60 minutes after stimulation, while motor evoked potentials (MEPs) were recorded to evaluate changes in cortical excitability. Only the full-band condition (100-700 Hz) was able to modulate excitability by enhancing MEPs at 10 and 20 minutes after stimulation: neither the higher nor the lower sub-range of the high-frequency band significantly modulated cortical excitability. These results show that the efficacy of tRNS is strictly related to the width of the selected frequency range.

摘要

经颅随机噪声刺激(tRNS)是一种新的神经调节方案。高频带(hf-tRNS)已被证明在增强神经兴奋性方面最有效。hf-tRNS 的频带通常在 100 到 640Hz 之间。在这里,我们想知道增加神经兴奋性是否需要高频带的较低和较高半部分。在初级运动皮层(M1)上以 1.5mA 的强度进行 10 分钟的三个频率范围(100-400Hz、400-700Hz、100-700Hz)和假刺激条件。在刺激后 0、10、20、30、45 和 60 分钟,在同一区域施加单次经颅磁刺激(TMS),同时记录运动诱发电位(MEPs)以评估皮质兴奋性的变化。只有全频带条件(100-700Hz)能够通过在刺激后 10 和 20 分钟增强 MEPs 来调节兴奋性:高频带的较高或较低子范围都不能显著调节皮质兴奋性。这些结果表明,tRNS 的疗效与所选频率范围的宽度密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662a/6806007/2b090b738aa3/41598_2019_51553_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662a/6806007/62d24f48e743/41598_2019_51553_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662a/6806007/864eb01fe04c/41598_2019_51553_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662a/6806007/2b090b738aa3/41598_2019_51553_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662a/6806007/62d24f48e743/41598_2019_51553_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662a/6806007/864eb01fe04c/41598_2019_51553_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/662a/6806007/2b090b738aa3/41598_2019_51553_Fig3_HTML.jpg

相似文献

[1]
Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability.

Sci Rep. 2019-10-22

[2]
Exploring parameters of gamma transcranial alternating current stimulation (tACS) and full-spectrum transcranial random noise stimulation (tRNS) on human pharyngeal cortical excitability.

Neurogastroenterol Motil. 2021-9

[3]
Comparative study of motor cortical excitability changes following anodal tDCS or high-frequency tRNS in relation to stimulation duration.

Physiol Rep. 2020-10

[4]
The Effects of 1 mA tACS and tRNS on Children/Adolescents and Adults: Investigating Age and Sensitivity to Sham Stimulation.

Neural Plast. 2020

[5]
Increasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.

Restor Neurol Neurosci. 2014

[6]
Comparison of the effects of transcranial random noise stimulation and transcranial direct current stimulation on motor cortical excitability.

J ECT. 2015-3

[7]
Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway.

J Clin Neurosci. 2022-6

[8]
Effects of transcranial random noise stimulation timing on corticospinal excitability and motor function.

Behav Brain Res. 2021-9-24

[9]
The effect of transcranial random noise stimulation on corticospinal excitability and motor performance.

Neurosci Lett. 2019-4-24

[10]
Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability.

Neural Plast. 2011-7-26

引用本文的文献

[1]
Comparing the effect of transcranial random noise stimulation and transcranial direct current stimulation over the motor cortex on motor performance in men vs. women: a randomized controlled crossover study.

Front Hum Neurosci. 2025-8-8

[2]
Modulating excitation/inhibition balance through transcranial electrical stimulation: physiological mechanisms in animal models.

Front Neurosci. 2025-7-15

[3]
Effects of a Single Session 400 Hz Transcranial Pulsed Current Stimulation on Corticospinal and Corticocortical Excitability and Hand Dexterity: A Double-Blind RCT.

Psychophysiology. 2025-7

[4]
No evidence of improvements in inhibitory control with tRNS.

Neuroimage Rep. 2021-10-1

[5]
The impact of transcranial random noise stimulation (tRNS) on alpha coherence and verbal divergent thinking.

Netw Neurosci. 2025-4-30

[6]
Modulating neuroplasticity for chronic pain relief: noninvasive neuromodulation as a promising approach.

Exp Mol Med. 2025-3

[7]
The effect of transcranial random noise stimulation on the movement time and components of noise, co-variation, and tolerance in a perceptual-motor task.

Sci Rep. 2025-2-3

[8]
Dissociable components of visual perceptual learning characterized by non-invasive brain stimulation: Stage 1 Registered Report.

Brain Commun. 2025-1-2

[9]
Mystery of gamma wave stimulation in brain disorders.

Mol Neurodegener. 2024-12-18

[10]
Reduction of cognitive fatigue and improved performance at a VR-based driving simulator using tRNS.

iScience. 2024-7-20

本文引用的文献

[1]
Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): A combined stochastic resonance and equivalent noise approach.

Brain Stimul. 2019-2-26

[2]
tRNS boosts perceptual learning in peripheral vision.

Neuropsychologia. 2019-2-2

[3]
Effects of Short-Term Random Noise Electrical Stimulation on Dissociated Pyramidal Neurons from the Cerebral Cortex.

Neuroscience. 2019-1-29

[4]
The effects of high-frequency transcranial random noise stimulation (hf-tRNS) on global motion processing: An equivalent noise approach.

Brain Stimul. 2018-7-25

[5]
Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia.

Neuropsychologia. 2018-4-25

[6]
Emotion perception improvement following high frequency transcranial random noise stimulation of the inferior frontal cortex.

Sci Rep. 2017-9-12

[7]
Enhancing anger perception in older adults by stimulating inferior frontal cortex with high frequency transcranial random noise stimulation.

Neuropsychologia. 2017-7-28

[8]
Comparison of Three Non-Invasive Transcranial Electrical Stimulation Methods for Increasing Cortical Excitability.

Front Hum Neurosci. 2016-12-27

[9]
Opposite effects of high- and low-frequency transcranial random noise stimulation probed with visual motion adaptation.

Sci Rep. 2016-12-9

[10]
The application of online transcranial random noise stimulation and perceptual learning in the improvement of visual functions in mild myopia.

Neuropsychologia. 2016-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索