Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
Nat Commun. 2019 Oct 31;10(1):4963. doi: 10.1038/s41467-019-12933-9.
DNA origami tiles provide nanostructures for the spatial and temporal control of functional loads on the scaffolds. Here we introduce the active generation of nanoholes in the origami scaffolds using DNAzymes or light as triggers and present the programmed and switchable catalysis in the resulting nanocavities. We engineer "window" domains locked into the origami scaffolds by substrates of the Zn-ion- or Pb-ion-dependent DNAzymes. Using Zn ions and/or Pb ions, the programmed unlocking of the "window" domains is demonstrated. The tailored functionalization of the origami scaffolds allows the programmed operation of catalytic processes in the confined nanocavities. Also, the "window" domain is integrated into the origami scaffold using photoisomerizable azobenzene-modified locks. The cyclic photoisomerization of the locks between the cis and trans states leads to a reversible opening and closure of the nanoholes and to the cyclic light-induced switching of catalytic processes in the nanocavities.
DNA 折纸瓷砖为功能负载在支架上的空间和时间控制提供了纳米结构。在这里,我们使用 DNA 酶或光作为触发,引入了在折纸支架中主动生成纳米孔的方法,并展示了在产生的纳米腔中的可编程和可切换的催化作用。我们通过 Zn 离子或 Pb 离子依赖的 DNA 酶的底物来设计锁定在折纸支架中的“窗口”结构域。使用 Zn 离子和/或 Pb 离子,我们演示了“窗口”结构域的可编程解锁。折纸支架的定制功能化允许在受限的纳米腔中进行催化过程的编程操作。此外,我们还使用可光异构化的偶氮苯修饰锁将“窗口”结构域集成到折纸支架中。锁的顺式和反式之间的循环光致异构化导致纳米孔的可逆打开和关闭,以及纳米腔中催化过程的循环光诱导切换。