Suppr超能文献

一种将脉搏压力波数据与妊娠相关联的机器学习方法。

A machine learning method correlating pulse pressure wave data with pregnancy.

机构信息

Department of Mathematics, Pennsylvania State University, State College, Pennsylvania.

School of Mathematical Sciences, Peking University, Beijing, China.

出版信息

Int J Numer Method Biomed Eng. 2020 Jan;36(1):e3272. doi: 10.1002/cnm.3272. Epub 2019 Nov 10.

Abstract

Pulse feeling , representing the tactile arterial palpation of the heartbeat, has been widely used in traditional Chinese medicine (TCM) to diagnose various diseases. The quantitative relationship between the pulse wave and health conditions however has not been investigated in modern medicine. In this paper, we explored the correlation between pulse pressure wave (PPW), rather than the pulse key features in TCM, and pregnancy by using deep learning technology. This computational approach shows that the accuracy of pregnancy detection by the PPW is 84% with an area under the curve (AUC) of 91%. Our study is a proof of concept of pulse diagnosis and will also motivate further sophisticated investigations on pulse waves.

摘要

脉象,代表心跳的触觉动脉触诊,在中医中被广泛用于诊断各种疾病。然而,在现代医学中,脉搏波与健康状况的定量关系尚未得到研究。在本文中,我们使用深度学习技术探讨了脉搏压力波(PPW)与妊娠之间的相关性,而不是中医中的脉搏关键特征。这种计算方法表明,PPW 检测妊娠的准确率为 84%,曲线下面积(AUC)为 91%。我们的研究是脉象诊断的概念验证,也将激励对脉搏波的进一步深入研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验