Suppr超能文献

基于深度卷积神经网络和生成对抗网络的 CT 图像肺结节分类的多平面分析。

Multiplanar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks.

机构信息

Graduate School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake cho, Toyoake City, Aichi, 470-1192, Japan.

Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake cho, Toyoake City, Aichi, 470-1192, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2020 Jan;15(1):173-178. doi: 10.1007/s11548-019-02092-z. Epub 2019 Nov 16.

Abstract

PURPOSE

Early detection and treatment of lung cancer holds great importance. However, pulmonary-nodule classification using CT images alone is difficult to realize. To address this concern, a method for pulmonary-nodule classification based on a deep convolutional neural network (DCNN) and generative adversarial networks (GAN) has previously been proposed by the authors. In that method, the said classification was performed exclusively using axial cross sections of pulmonary nodules. During actual medical-examination procedures, however, a comprehensive judgment can only be made via observation of various pulmonary-nodule cross sections. In the present study, a comprehensive analysis was performed by extending the application of the previously proposed DCNN- and GAN-based automatic classification method to multiple cross sections of pulmonary nodules.

METHODS

Using the proposed method, CT images of 60 cases with confirmed pathological diagnosis by biopsy are analyzed. Firstly, multiplanar images of the pulmonary nodule are generated. Classification training was performed for three DCNNs. A certain pretraining was initially performed using GAN-generated nodule images. This was followed by fine-tuning of each pretrained DCNN using original nodule images provided as input.

RESULTS

As a result of the evaluation, the specificity was 77.8% and the sensitivity was 93.9%. Additionally, the specificity was observed to have improved by 11.1% without any reduction in the sensitivity, compared to our previous report.

CONCLUSION

This study reports development of a comprehensive analysis method to classify pulmonary nodules at multiple sections using GAN and DCNN. The effectiveness of the proposed discrimination method based on use of multiplanar images has been demonstrated to be improved compared to that realized in a previous study reported by the authors. In addition, the possibility of enhancing classification accuracy via application of GAN-generated images, instead of data augmentation, for pretraining even for medical datasets that contain relatively few images has also been demonstrated.

摘要

目的

早期发现和治疗肺癌至关重要。然而,仅使用 CT 图像对肺结节进行分类是困难的。为了解决这个问题,作者之前提出了一种基于深度卷积神经网络(DCNN)和生成对抗网络(GAN)的肺结节分类方法。在该方法中,仅使用肺结节的轴向横截面进行分类。然而,在实际的体检过程中,只能通过观察各种肺结节的横截面来进行全面的判断。在本研究中,通过将之前提出的基于 DCNN 和 GAN 的自动分类方法的应用扩展到肺结节的多个横截面上,进行了全面的分析。

方法

使用所提出的方法,对 60 例经活检证实的病理诊断的 CT 图像进行分析。首先,生成肺结节的多平面图像。对三个 DCNN 进行分类训练。首先使用 GAN 生成的结节图像进行初步预训练,然后使用提供的原始结节图像对每个预训练的 DCNN 进行微调。

结果

评估结果显示,特异性为 77.8%,敏感性为 93.9%。与作者之前的报告相比,特异性提高了 11.1%,而敏感性没有降低。

结论

本研究报告了一种使用 GAN 和 DCNN 对多个截面的肺结节进行分类的综合分析方法。与作者之前报告的研究相比,使用多平面图像的基于判别方法的有效性已被证明有所提高。此外,通过使用 GAN 生成的图像而不是数据增强进行预训练,即使对于包含相对较少图像的医学数据集,也有可能提高分类准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验