Department of Computer Science and Computer Engineering, La Trobe University, Melbourne, Australia.
Department of Public Health, La Trobe University, Melbourne, Australia.
Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1799-1808. doi: 10.1007/s11548-017-1605-6. Epub 2017 May 13.
PURPOSE : Lung cancer has the highest death rate among all cancers in the USA. In this work we focus on improving the ability of computer-aided diagnosis (CAD) systems to predict the malignancy of nodules from cropped CT images of lung nodules.
We evaluate the effectiveness of very deep convolutional neural networks at the task of expert-level lung nodule malignancy classification. Using the state-of-the-art ResNet architecture as our basis, we explore the effect of curriculum learning, transfer learning, and varying network depth on the accuracy of malignancy classification.
Due to a lack of public datasets with standardized problem definitions and train/test splits, studies in this area tend to not compare directly against other existing work. This makes it hard to know the relative improvement in the new solution. In contrast, we directly compare our system against two state-of-the-art deep learning systems for nodule classification on the LIDC/IDRI dataset using the same experimental setup and data set. The results show that our system achieves the highest performance in terms of all metrics measured including sensitivity, specificity, precision, AUROC, and accuracy.
The proposed method of combining deep residual learning, curriculum learning, and transfer learning translates to high nodule classification accuracy. This reveals a promising new direction for effective pulmonary nodule CAD systems that mirrors the success of recent deep learning advances in other image-based application domains.
肺癌是美国所有癌症中死亡率最高的癌症。在这项工作中,我们专注于提高计算机辅助诊断(CAD)系统从肺部结节的裁剪 CT 图像预测结节恶性程度的能力。
我们评估了深度卷积神经网络在专家级肺结节恶性分类任务中的有效性。我们使用最先进的 ResNet 架构作为基础,探索课程学习、迁移学习和网络深度变化对恶性分类准确性的影响。
由于缺乏具有标准化问题定义和训练/测试分割的公共数据集,该领域的研究往往不能直接与其他现有工作进行比较。这使得很难知道新解决方案的相对改进程度。相比之下,我们直接在 LIDC/IDRI 数据集上使用相同的实验设置和数据集,将我们的系统与两种最先进的深度学习系统进行了结节分类比较。结果表明,我们的系统在所有测量指标(包括灵敏度、特异性、精度、AUROC 和准确性)方面都实现了最高的性能。
结合深度残差学习、课程学习和迁移学习的方法可实现高结节分类精度。这为有效的肺部结节 CAD 系统开辟了一个有前途的新方向,反映了最近深度学习在其他基于图像的应用领域取得的成功。