Suppr超能文献

基于深度学习方法的 CT 图像鼻咽癌肿瘤靶区勾画。

The Tumor Target Segmentation of Nasopharyngeal Cancer in CT Images Based on Deep Learning Methods.

机构信息

National Key Laboratory of Fundamental Science on Synthetic Vision, College of Computer Science, Sichuan University, Chengdu, Sichuan, China.

Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

Technol Cancer Res Treat. 2019 Jan-Dec;18:1533033819884561. doi: 10.1177/1533033819884561.

Abstract

Radiotherapy is the main treatment strategy for nasopharyngeal carcinoma. A major factor affecting radiotherapy outcome is the accuracy of target delineation. Target delineation is time-consuming, and the results can vary depending on the experience of the oncologist. Using deep learning methods to automate target delineation may increase its efficiency. We used a modified deep learning model called U-Net to automatically segment and delineate tumor targets in patients with nasopharyngeal carcinoma. Patients were randomly divided into a training set (302 patients), validation set (100 patients), and test set (100 patients). The U-Net model was trained using labeled computed tomography images from the training set. The U-Net was able to delineate nasopharyngeal carcinoma tumors with an overall dice similarity coefficient of 65.86% for lymph nodes and 74.00% for primary tumor, with respective Hausdorff distances of 32.10 and 12.85 mm. Delineation accuracy decreased with increasing cancer stage. Automatic delineation took approximately 2.6 hours, compared to 3 hours, using an entirely manual procedure. Deep learning models can therefore improve accuracy, consistency, and efficiency of target delineation in T stage, but additional physician input may be required for lymph nodes.

摘要

放射治疗是鼻咽癌的主要治疗策略。影响放射治疗效果的一个主要因素是靶区勾画的准确性。靶区勾画既耗时又费力,并且结果可能因肿瘤学家的经验而异。使用深度学习方法实现靶区勾画自动化可能会提高其效率。我们使用了一种名为 U-Net 的改良深度学习模型,该模型可以自动分割和勾画鼻咽癌患者的肿瘤靶区。患者被随机分为训练集(302 例)、验证集(100 例)和测试集(100 例)。使用训练集中的标记 CT 图像对 U-Net 模型进行训练。U-Net 能够对淋巴结进行勾画,总体骰子相似系数为 65.86%,对原发肿瘤进行勾画,总体骰子相似系数为 74.00%,各自的 Hausdorff 距离分别为 32.10mm 和 12.85mm。随着癌症分期的增加,勾画准确性会下降。与完全手动操作相比,自动勾画大约需要 2.6 小时,而手动勾画需要 3 小时。因此,深度学习模型可以提高 T 分期靶区勾画的准确性、一致性和效率,但可能需要额外的医生输入来勾画淋巴结。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a65/6862777/9b4d184afed4/10.1177_1533033819884561-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验