Fu Min, Wu Wenming, Hong Xiafei, Liu Qiuhua, Jiang Jialin, Ou Yaobin, Zhao Yupei, Gong Xinqi
Mathematics Department, School of Information, Renmin University of China, Beijing, China.
Mathematical Intelligence Application Lab, Institute for Mathematical Sciences, Renmin University of China, Beijing, China.
BMC Syst Biol. 2018 Apr 24;12(Suppl 4):56. doi: 10.1186/s12918-018-0572-z.
Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge.
In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline.
Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data.
The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.
从医学图像中高效地进行目标器官的计算识别和分割是诊断和治疗的基础,尤其是对于胰腺癌而言。在实际操作中,胰腺和腹部器官外观的多样性使得物体的详细纹理信息在分割算法中至关重要。然而,根据我们的观察,诸如更丰富特征卷积网络(RCF)等先前网络的结构过于粗糙,无法准确分割目标物体(胰腺),尤其是边缘部分。
在本文中,我们将提出的RCF扩展到具有挑战性的胰腺分割边缘检测领域,并提出了一种新颖的胰腺分割网络。通过采用多层上采样结构取代所有阶段的简单上采样操作,所提出的网络充分考虑了目标物体(胰腺)的多尺度详细纹理信息以执行逐像素分割。此外,我们使用CT扫描数据来提供和训练我们的网络,从而获得一个有效的流程。
使用我们具有多层上采样模型的流程,我们在单目标物体(胰腺)分割任务中取得了比RCF更好的性能。此外,结合多尺度输入,我们在测试数据中实现了76.36%的骰子相似系数(DSC)值。
我们的实验结果表明,在我们的数据集中,我们的先进模型比先前的网络表现更好。换句话说,它在捕捉详细纹理信息方面具有更强的能力。因此,我们新的单目标分割模型在计算自动诊断中具有实际意义。