Suppr超能文献

细胞器大小在胚胎发育过程中的缩放。

Organelle size scaling over embryonic development.

机构信息

Department of Molecular Biology, University of Wyoming, Laramie, Wyoming.

出版信息

Wiley Interdiscip Rev Dev Biol. 2020 Sep;9(5):e376. doi: 10.1002/wdev.376. Epub 2020 Jan 31.

Abstract

Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.

摘要

细胞分裂而不生长会导致胚胎早期发育过程中细胞体积逐渐减小。细胞内结构和细胞器的大小如何与细胞大小成比例,以及这种比例关系有什么功能意义?模式生物,特别是秀丽隐杆线虫、黑腹果蝇、非洲爪蟾和小家鼠,为核、有丝分裂纺锤体和染色体的发育大小比例提供了深入的见解。核的大小受核质转运、核膜蛋白和细胞骨架的调节。微管动力学和染色质紧缩的调节剂分别调节纺锤体和有丝分裂染色体大小比例。尽管新的成像方法有望纠正这一不足,但对于膜结合细胞器(如内质网、高尔基体、线粒体和溶酶体)的发育比例关系的研究较少。虽然调用限制成分和组装与拆卸的动态调节的模型可以解释早期胚胎中的一些大小比例关系,但研究细胞生物学中的新概念(如相分离和细胞器间接触)的贡献将是令人兴奋的。随着对细胞器大小比例的潜在机制的理解不断加深,未来的研究有望揭示适当比例对细胞功能和胚胎发育的重要性,以及异常比例如何导致疾病。本文属于以下类别:空间和时间模式的建立 > 大小、比例和时间的调节 早期胚胎发育 > 受精到原肠胚形成 比较发育与进化 > 模型系统。

相似文献

1
Organelle size scaling over embryonic development.细胞器大小在胚胎发育过程中的缩放。
Wiley Interdiscip Rev Dev Biol. 2020 Sep;9(5):e376. doi: 10.1002/wdev.376. Epub 2020 Jan 31.
2
Intracellular Scaling Mechanisms.细胞内缩放机制。
Cold Spring Harb Perspect Biol. 2015 Aug 7;7(12):a019067. doi: 10.1101/cshperspect.a019067.
4
Regulation of organelle size and organization during development.在发育过程中细胞器大小和组织的调节。
Semin Cell Dev Biol. 2023 Jan 15;133:53-64. doi: 10.1016/j.semcdb.2022.02.002. Epub 2022 Feb 8.
5
Mechanisms of intracellular scaling.细胞内尺度调节的机制。
Annu Rev Cell Dev Biol. 2012;28:113-35. doi: 10.1146/annurev-cellbio-092910-154158. Epub 2012 Jul 12.
6
9
Mitotic chromosome size scaling in Xenopus.爪蟾有丝分裂染色体大小的比例关系。
Cell Cycle. 2011 Nov 15;10(22):3863-70. doi: 10.4161/cc.10.22.17975.
10
Recent advances in understanding nuclear size and shape.核大小与形态认知的最新进展
Nucleus. 2016 Apr 25;7(2):167-86. doi: 10.1080/19491034.2016.1162933. Epub 2016 Mar 10.

引用本文的文献

1
Nuclear growth and import can be uncoupled.核生长和导入可以解耦。
Mol Biol Cell. 2024 Jan 1;35(1):ar1. doi: 10.1091/mbc.E23-04-0138. Epub 2023 Oct 30.
3
How Metabolic Rate Relates to Cell Size.代谢率与细胞大小的关系。
Biology (Basel). 2022 Jul 25;11(8):1106. doi: 10.3390/biology11081106.
4
Development of a multiciliated cell.纤毛细胞的发育。
Curr Opin Cell Biol. 2022 Aug;77:102105. doi: 10.1016/j.ceb.2022.102105. Epub 2022 Jun 15.
5
Specificity of Nuclear Size Scaling in Frog Erythrocytes.青蛙红细胞中核大小缩放的特异性
Front Cell Dev Biol. 2022 May 18;10:857862. doi: 10.3389/fcell.2022.857862. eCollection 2022.
6
Regulation of organelle size and organization during development.在发育过程中细胞器大小和组织的调节。
Semin Cell Dev Biol. 2023 Jan 15;133:53-64. doi: 10.1016/j.semcdb.2022.02.002. Epub 2022 Feb 8.
8
Mechanics of Multicentrosomal Clustering in Bipolar Mitotic Spindles.多中心体簇集在双极有丝分裂纺锤体中的机制。
Biophys J. 2020 Jul 21;119(2):434-447. doi: 10.1016/j.bpj.2020.06.004. Epub 2020 Jun 12.

本文引用的文献

3
Quantitative Studies for Cell-Division Cycle Control.细胞分裂周期调控的定量研究
Front Physiol. 2019 Aug 19;10:1022. doi: 10.3389/fphys.2019.01022. eCollection 2019.
5
How to tune spindle size relative to cell size?如何调整相对于细胞大小的纺锤体大小?
Curr Opin Cell Biol. 2019 Oct;60:139-144. doi: 10.1016/j.ceb.2019.06.007. Epub 2019 Aug 1.
7
Reticulon 4a promotes exocytosis in mammalian cells.Reticulon 4a 促进哺乳动物细胞的胞吐作用。
Mol Biol Cell. 2019 Aug 15;30(18):2349-2357. doi: 10.1091/mbc.E19-03-0159. Epub 2019 Jul 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验